期刊文献+

关于克隆选择算法优化检测器的研究

Study on Detector Optimization in Clonal Selection Algorithm
下载PDF
导出
摘要 否定选择算法能降低入侵检测系统的误报率,但必须和其他免疫算法结合起来使用.本文提出了一种含有否定选择算子和遗传算子的克隆选择算法,通过克隆选择算法产生多样子代检测器,并且从中选择比其父代更优的检测器去取代父代检测器,这样一代一代循环,使检测系统具有更好的覆盖空间.实验表明,该算法在提高检测率,降低误报率方面是有效的. Though negative selection algorithm can improve detection rate of the intrusion detection system, it must be used with other immune - algorithms. This paper proposes a clonal selection algorithm with negative selection operator and genetic operator. The new clonal algorithm could produce various detectors, choose superior detectors to substitute for its parent generation detectors and iterate like this. The iteration enables the detection system to have better covering space. The results from the corresponding experiments show that the algorithm is efficient in increasing correctness and decreasing misdiagnoses.
出处 《哈尔滨理工大学学报》 CAS 2007年第5期102-104,109,共4页 Journal of Harbin University of Science and Technology
基金 国家自然科学基金项目(60671049) 黑龙江省教育厅科学技术研究项目(10541044).
关键词 入侵检测 克隆选择 否定选择算子 遗传算子 intrusion detection clonal selection negative selection operator genetic operator
  • 相关文献

参考文献6

  • 1FORREST S,PERELSON A.Self-Nonself Discrimination in a Computer[C].Proceeding of the 1994 IEEE Symposium on Research in Security and Privacy,Los Alomos,1994:202-212.
  • 2KIM J,BENTLEY P J.Towards an Artificial Immune System for Net-work Intrusion Detection:An Investigation of Clonal Selection with a Negative Selection Operator[C].The Congrsson Evolutionary Computation,Seoul Korea,2001:1 244-1 252.
  • 3HAESELEER P D.A Change-detection Method Inspired by the Immune System:Theory,Algorithms,and Techniques[R].Technical Report CS-95-06,Department of Computer Science,University of New Mexico,1995.
  • 4HELMAN P,FORREST S.An Efficient Algorithms for Generating Random Antibody Strings[R].Technical Report CS-94-07,Department of Computer Science,University of New Mexico,1994.
  • 5刘赛,徐斌,梁意文.入侵检测系统中的一种免疫遗传算法[J].计算机工程,2004,30(8):63-64. 被引量:15
  • 6吴泽俊,钱立进,梁意文.入侵检测系统中基于免疫的克隆选择算法[J].计算机工程,2004,30(6):50-52. 被引量:15

二级参考文献13

  • 1[1]Eskin E.Anomaly Detection over Noisy Data Using Learned Probability Distributions. In Proc. 17th International Conf. on Machine Learning,2000:255-262
  • 2[2]Dagupta D,Gonzalez F.Information Assuarance in Computer Networks.Chapter An Intelligent Decision Support System for Intrusion Detection and Response,2001:1 - 14
  • 3[3]Forrest S,Perelson A,Allen L,et al.Self-nonself Discrimination in a Computer. In Proc. IEEE Symp. on Research in Security and Privacy,1994
  • 4[4]Kephart J.A Biologically Inspired Immune System for Computers.In:Proceedings of Artificial Life, 1994:130-139
  • 5[5]Kim J,Bentley P J.An Evaluation of Negative Selection in an Artificial Immune System for Network Intrusion Detection. In:Proceedings of the Genetic and Evolutionary Computation Conference,2001 :1330-1337
  • 6Tizard I R.Immunology:Introduction (4th Ed).Saundcrs College Publishing, 1995.
  • 7Dasgupta D (Ed). Artificial Immune Systems and Fheir Applications.Springer-Verlag.Berlin.1998:3-21.
  • 8Holimeyer S,Forrest S.Arehiccture for an Artificial Immune System.Evolutionary Computation.2000,7(1):45-68.
  • 9Kim J.Bentley P. The Artificial Immune Model for Network Intrusion Detection .7th Euroopean Conference on Intelligent Techniques and Soft Computing(EUFIT99).Aachen,Germany,1999.
  • 10Kim J, Bentley P. The Human Immune System and Network Intrusion Detection. 7th Eturopcan Conference on Intelligent Techniques and Soft Computing (EUFIT99), Aachen, Germnany. 1999.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部