期刊文献+

关于Bernoulli数与Euler数的一组同余式

On A Group of Congruence of Bernoulli Number and Euler Number
下载PDF
导出
摘要 进一步研究了Bernoulli数与Euler数的分布及其性质,使得在组合数学中Ber-noulli数与Euler数组合恒等式的研究取得显著成效并得到广泛应用.运用了初等数论中同余的理论和解析数论的方法.得出了Bernoulli数与Euler数的同余恒等式,简单的表达了Bernoulli数与Euler数的计算公式.利用同余理论,研究了Bernoulli数与Euler数的p≡3(mod4)的恒等式,从而还可以得到Bernoulli数与Euler数的关于p≡1,3(mod8)的恒等式. To further study the distribution and properties of Bernoulli number and Euler number,and help combined identity of Bernoulli number and Euler number in combinatorics to make great achievements and wide application.The congruence theory in primary number theory and analytic number theory are applied.The congruence identity of Bernoulli number and Euler number is obtained,and computing formula for Bernoulli number and Euler number is simply expressed.With the application of congruence theory,the identity of p≡3(mod 4) of Bernoulli number and Euler number is studied,and the identity of p≡1,3(mod 8) of Bernoulli number and Euler number is obtained.
作者 杨存典
机构地区 商洛学院数学系
出处 《西安工业大学学报》 CAS 2007年第4期406-408,共3页 Journal of Xi’an Technological University
基金 国家自然科学基金项目(10671155) 陕西省专项计划科研项目(04JK132) 商洛学院科研基金重点资助项目(05SKY110)
关键词 特征函数 BERNOULLI数 EULER数 同余式 property function Bernoulli Number Euler Number congruence
  • 相关文献

参考文献6

  • 1[1]Guy R K.Unsolved Problem in Number Theory[J].Springer-Verlag,1994:101.
  • 2[2]Wenpeng Zhang,Some Identities Involving The Euler and The Central Factorial Number[J].The Fibonacci Quarterly,1998,36 (2):154.
  • 3[3]GuodongLiu.On Congruences of Euler Numbers Modulo an Square[J].The Fibonacci Quarterly,2005,43 (2):132.
  • 4[4]Lehmer E.On Congruences Involving Bernoulli Numbers and the Quotients of Fermat and Wilson[J].Annals of Math,1938,39:350.
  • 5[5]Dilcher K.Sum of Products of Bernoulli Numbers[J].Journal of Number Theory,1996,60(1):23.
  • 6[6]Tom M.Apostol.Introduction to Analytic Number Theory[J].Springer-Verlag,1976:112.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部