摘要
设f∈C·(I),I为一区间,pp(f)=N(2k0+1),k0≥1,本文证明了,在I上至少存在一单调点列其中x0(i)分别以[2(k0+1)+1]为周期,i=1,2…,进一步,我们证明了具有简单周期轨道的奇周期点列的存在性.利用本文的结果,不难推出Block及Hart的非常重要的简单期轨道存在性的结论.
Let f∈C°(I) and pp (f) =N(2k0+1) with k0≥1, In this paper, we obtain there exists at least a monotonic sequence of odd periodic points where x0(i) is a [2(k0+ 1)+ 1] periodic point for all i≥1. Moreover, there isn't any n - periodic point in x0(i), x0(i+1))with n ∈ { 1,, 3, 5, ...,2 (0+i) - 1 }for all i≥1. Furtherly, we also find a useful monotonic sequence of odd periodic point with simple orbit for all i≥1. By the result,the theorem B of Block and Hart is easy to show.
出处
《湘潭大学自然科学学报》
CAS
CSCD
1997年第1期24-26,共3页
Natural Science Journal of Xiangtan University
基金
国家自然科学基金
关键词
周期轨道
区间连续自映射
奇周期点列
odd periodic point,periodic point with simple,periodic point with minimam orbit