期刊文献+

求解Duffing方程周期解的大范围收敛方法 被引量:3

A GLOBAL METHOD FOR SOLVING PERIODIC SOLUTION OF DUFFING EQUATION
下载PDF
导出
摘要 在条件1a(t)gx(t,x)b(t)4下,构造性地证明了Dufing方程2π-周期解的存在唯一性,证明方法同时提供了一种计算周期解的方法.本文利用具全局收敛性的数值延拓算法给出了计算实例. The existence and uniqueness of 2π periodic solution of Duffing equation have been investigated theoretically by many authors, but few researchers have considered the computational method for approximate solution. In this paper, the following initial value problemx(t)+Cx(t)+g(t,x(t))=e(t) x(0)=α,x(t)=β(*) is firstly considered under the condition1a(t)g x(t,x)b(t)4(**)Denote the solution of (*) by x(t,v), where v=(α,β) T.Define f(v)=(x(t,v),x(t,v)) T, and F(v)=f(v)-v. With this preparation, finding the periodic solution of Duffing equation is transformed into solving F(v)=0. For any given v 0∈R 2, denote H(v,λ,v 0)=F(v)-(1-λ)F(v 0). The following main theorem is constructively proved. Theorem If the continuous function g(t,x) satisfies (**), the solution v=v(λ) of the following initial value problem d v d λ=- -1 F(v 0) v(0)=v 0exists for 0≤λ≤1 and satisfies H(υ,λ,υ 0)≡0. Hence, Duffing equation has a unique 2π periodic solution. Lastly, with the use of the numerical continuation method, some examples are computed. This approach provides a global method for finding solutions of Duffing equation.
机构地区 南京大学数学系
出处 《南京大学学报(自然科学版)》 CAS CSCD 1997年第3期328-336,共9页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金
关键词 DUFFING方程 周期解 数值延拓法 大范围收敛法 Duffing Equation, Periodic Solution, Numerical Continuation Method
  • 相关文献

参考文献5

二级参考文献1

同被引文献11

  • 1李维国,张丹青.Newton方程周期解存在唯一性的新证明[J].高校应用数学学报(A辑),1998,13(3):241-248. 被引量:3
  • 2LI Wei-guo, SHEN Zu-he. The existence and uniqueness of Duffing equations [J]. Nonlinear Anal, 2000,42 : 1209-1220.
  • 3Brown K. Nonlinear boundary value problems and a global inverse function theorem [J]. Ann ali, Mat Pure Apply, 1975,106 : 205-217.
  • 4Ortega J M, Rheinboldt W C. Iterative Solution of Nonlinear Equations in Several Variables[M]. Academic Press, New York,1970.
  • 5Coddington E A, Levinson N. Theory of Ordinary Differential Equations [M]. McGraw-Hill, New York : International Series in Pure and Applied Mathematics, 1955.
  • 6Allgower E L, Georg K. Numerical Continuation Methods: An Instruction[M]. Springer-Verlag, Berlin, New York, 1990.
  • 7李维国,沈祖和.Duffing方程周期解存在的构造性证明[J].科学通报,1997,42(15):1591-1595. 被引量:6
  • 8李树杰,冯德兴.共振下一类常微分方程组周期解的唯一存在性[J]系统科学与数学,1986(04).
  • 9王铎.周期扰动的非保守系统的2π-周期解[J]数学学报,1983(03).
  • 10Brown K J,Lin S S.Periodically perturbed conservative systems and a global inverse function theorem[].Nonlinear Analysis Methods & Applications.1980

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部