期刊文献+

Z2^r上的Duadic码

Duadic Codes over Z_2~r
下载PDF
导出
摘要 设G为有限阿贝尔群,群环Zpr[G]中的理想称为Zpr上的阿贝尔码。对G的任意子集X,由离散Fourier变换和根定义Zpr[G]中的一个理想IX。对于G的m-劈分定义四类码,这些码中的任一个码都称为Zpr[G]中的m-adic码,在此定义的基础上,给出Z2r上Duadic码存在的充分必要条件。 Let G be a finite Abelian group,and an ideal in the grouping Zpr[G] is called an Abelian code over Zpr.For any subset X of G,an ideal X in Zpr[G] is defined by means of discrete Fourier transform and zeros.For an m-splitting of G,4 classes codes are defined.Any of these codes is called an m-adic codes.Thus necessary and sufficient existent conditions for duadic codes over Zr2 are presented.
出处 《河南科技大学学报(自然科学版)》 CAS 2007年第6期85-88,共4页 Journal of Henan University of Science And Technology:Natural Science
基金 国家自然科学基金项目(60473027)
关键词 阿贝尔群 m-劈分 Duadic码 Abelian code M-splitting Duadic code
  • 相关文献

参考文献9

  • 1Langevin P,Sole P.Duadic Z4-codes[J].Finite Fields Their Appl,2000,6(4):309-326.
  • 2Ling S,Sole P.Duadic Codes Over F2+uF2[J].IEEE Trans on Inform Theory,2001,47:1581-1589.
  • 3Ding C S,Kohel D R,Ling S.Split Group Codes[J].IEEE Trans on Inform Theory,2000,40(2):485-495.
  • 4Leon S,Pless V.Duadic Codes[J].IEEE Trans on Inform Theory,1984,30:709-714.
  • 5Pless V,Rushanan J J.Triadic Codes[J].J Combin Theory,Ser A 1991,57:254-261.
  • 6Brualdi R A,Pless V.Polyadic Codes[J].Disc Appl Math,1989,25:3-17.
  • 7Ling S,Xing C P.Polyadic Codes Revisited[J].IEEE Trans on Inform Theory,2004,50:200-207.
  • 8连广鑫,张胜元.Z_p^r上的polyadic码[J].泉州师范学院学报,2005,23(2):1-5. 被引量:2
  • 9Ding C S,Pless V.Cyclotomy and Duadic Codes of Prime Lengths[J].IEEE Trans on Inform Theory,1999,45:453-466.

二级参考文献7

  • 1Leon S,Pless V. Duadic codes[J]. IEEETrans. Inform. Theory, 1984,(30):709-714.
  • 2Smid M. Duadic codes [J]. IEEE Trans. Inform. Theory, 1987,(33):432-433.
  • 3Rushan J J. Duadic codes and difference sets[J]. J. Combin. Theory, Ser. A, 1991,(57):254-261.
  • 4Pless V,Rushan J J. Triadic codes[J]. Linear Alg. Appl. , 1988,(98) : 415-433.
  • 5Bruaildi R A, Pless V. Polyadic codes[J]. Disc. Appl. Math. , 1989,(25) : 3-17.
  • 6Ling S, Xing C P. Polyadic codes revisited[J]. IEEE Trans. Inform. Theory, 2004,(50):200-207.
  • 7Langevin P, Sole P. Duadic Z4 -codes[J]. Finite Fields and Their Applications,2000,6(4):309-326.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部