期刊文献+

多因素耦合条件下硫化矿自燃神经网络动态预测模型研究 被引量:14

Research on ANN Dynamic Prediction Model for Spontaneous Combustion of Sulfide Ores with Multi-factors Coupling
下载PDF
导出
摘要 硫化矿石自燃是多种因素、多场耦合综合作用的结果,是一典型的非线性问题。笔者应用人工神经网络技术,以Matlab软件为平台,通过现场调查和理论分析,建立了矿石含硫量、通风强度、环境温度3因素与硫化矿石自燃之间的预测模型;通过数据样本学习与部分现场监测数据相结合进行模拟,研究表明预测数据与实测结果基本吻合,误差控制在10%以内,取得了较好的效果。该研究为预防硫化矿石自燃提供一个新的思路和方法,具有一定的理论意义和应用价值。 Spontaneous combustion of sulfide ores is caused by the coupling of multi-factors and multifields and it is a typical nonlinear problem. Based on the field survey and theoretic analysis, An ANN (Artificial Neural Network) forecasting model for sulfide ore spontaneous combustion, which takes the three factors of the content of sulfur, ventilation intensity, environmental temperature as the input variables of this model, has been built with the help of Matlab ( Matrix Laboratory) software. After the simulation through samples study and by combining field data, it shows that the predicting result is basically in accordance with the observation data, and the average error can be controlled within ten percent with satisfactory results. The research fruit provides a new approach and a route for preventing the spontaneous combustion of sulfide ore, which is of great significance both theoretically and practically.
出处 《中国安全科学学报》 CAS CSCD 2007年第8期32-36,共5页 China Safety Science Journal
基金 国家科技支撑计划项目(2006BAK04B03) 中南大学研究生教育创新资助项目
关键词 硫化矿 人工神经网络(ANN) 矩阵实验室(Matlab) 自燃 动态预测 耦合 sulfide ores spontaneous combustion artificial neural network (ANN) matlab( matrix laboratory) dynamic prediction coupling
  • 相关文献

参考文献10

  • 1Ashley Hull,Jennifer L.Lanthier and Pradeep K.Agarwal.The role of the diffusion of oxygen in the ignition of a coal stockpile in confined storage[J].Fuel,1997(76):975 -983
  • 2Wiwik Sujanti,Dong-ke Zhang.A laboratory study of spontaneous combustion of coal:the influence of inorganic matter and reactor size[J].Fuel,1999(78):549 -556
  • 3H.Wang,B.Z.Dlugogorski,E.M.Kennedy.Analysis of the mechanism of the low-temperature oxidation of coal[J].Combustion and Flame,2003(134):107-117
  • 4I.A.Basheer,M.Hajmeer.Artificia Ineural networks:fundamentals,computing,design,and application[J].Microbiological Methods,2000,43:3-31
  • 5肖红飞,田云丽,周利华.基于MATLAB工具箱的开采煤层自燃危险性预测[J].中国安全科学学报,2005,15(10):3-6. 被引量:5
  • 6Hecht-Nielsen R.Theory of the hack-propagation neural network[A].In Proceedings of International Joint Conference on Neural Networks[C].San Diego,USA,1989,Ⅰ:593 -599
  • 7Hornik K.Multi-layer feed forward networks are universal approximators[J].Neural networks,1989(2):359 -366
  • 8Cybenko G.Approximation by superposition of a sigmoidal function[J].Mathematics of Control,Signals and Systems,1989(2):303-314
  • 9Bo Pang,Shenglian Guo,Lihua Xiong,Chaoqun Li.A nonlinear perturbation model based on artificial neural network[J].Journal of Hydrology,2007,333:504 -516
  • 10柳静献,刘铁民,王金波.尘肺危害的神经网络评价及预测研究[J].中国安全科学学报,2001,11(2):18-21. 被引量:5

二级参考文献9

共引文献8

同被引文献109

引证文献14

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部