期刊文献+

基于样条迭代随机建模的高精度星间相对定位方法 被引量:1

A High-Precision Inter-satellite Relative Positioning Method Based on Spline Stochastic Modelling
下载PDF
导出
摘要 利用GPS确定星间相对位置,在无法得到精确的卫星相对运动动力学模型时,事后处理一般采用最小二乘方法,但实际应用时该方法采用的随机模型没有考虑实测GPS数据的异方差、时间和空间相关特性.为提高相对定位精度,本文提出了一种利用样条函数模型进行迭代随机建模的相对位置确定方法,即先根据相对位置参数的连续特性,建立基于样条表示的函数模型;然后根据历元差分原理消除原始双差GPS观测量的时间相关性;再利用MINQUE方法求解去相关GPS观测量的方差-协方差分量,最后利用LAMBDA方法固定整周模糊度并确定相对位置.实验仿真得到两个结论:(1)函数模型的样条表示不仅有利于消除动态条件下测量量的时间相关性,而且能起到节省参数、平滑噪声的作用,因此可大大提高相对定位的精度;(2)在样条函数模型的基础上,采用MINQUE方法迭代随机建模,能进一步提高相对定位精度. when GPS is used to determinate the inter-satellite relative position and the precise dynamic model of inter-satellite relative movement cannot be obtained, the least square method is usually used in the post data processing, but in practice, the stochastic model used by LS method do not take into account the characteristic of heteroscedastic, space- and time-correlated of real GPS measurements. In order to solve this problem and improve the positioning precision, this paper proposes a new relative positioning method, which first founds the spline function model based on the continuity of the relative position, then eliminate the time correlation of GPS double-difference measurements based on epoch-difference theory, then uses MINQUE to solve variance-covariance components of de-correlated GPS measurements iteratively, finally uses LAMBDA to fix the integer ambiguities and determinates the relative position. The experiment simulation gets two conclusions: (1)spline function model can not only benefit eliminating time correlation of GPS measurements in dynamic condition, but also improve the relative positioning precision greatly because of its functions of saving the number of tmknown parameters and smoothing noise; (2) the iterative stochastic modeling using MINQUE method can improve relative positioning precision more based on spline function model.
出处 《电子学报》 EI CAS CSCD 北大核心 2007年第10期1903-1908,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60572136) 国家973重点基础研究发展规划(No.5121701.02)
关键词 星间相对定位 最小二乘法 样条 迭代随机建模 inter-satellite relative positioning the least square spline iterative stochastic modeling
  • 相关文献

参考文献16

  • 1Jesse Leitner. Formation flying-the future of remote sensing from space[A]. The 18th International Symposium on Space Flight Dynamics[C]. Germany: Munich, 2004.621 - 626.
  • 2G Purcell, D Kuang, S Lichten, S-C Wu, et al. Autonomous Formation Flyer (AFF) Sensor Technology Development[R]. TMO Progress Report 42-134,1998.
  • 3Remco Kroes, Oliver Montenbruck, William Bertiger, et al. Precise GRACE baseline determination using GPS[J]. GPS Solutions.2005.9(1):21 - 31.
  • 4E Gill, M Steckling, P Butz. Gemini: a milestone towards autonomous formation flying[A]. ESA Workshop on On-Board Autonomy [C]. NoordwijkL: ES-TEC, 2001.415 -419.
  • 5Flechtner F. Relative baseline determination for a tandem SAR mission using GPS code and phase measurements [R]. GFZ (Geo Forschungs-Zentrum Potsdam), Technical Note,2003.
  • 6Chan-Woo Park, Philip Ferguson, Nick Pohlman, et al. Decentralized relative navigation for formation flying spacecraft using augmented CDGPS [A]. ION GPS 2001[C]. UT: Salt Lake City, 2001. 2304 - 2315.
  • 7范国清,王威,郗晓宁.联合CDGPS技术和星间相对测量进行编队星座状态确定[J].空间科学学报,2005,25(3):218-223. 被引量:7
  • 8Jinling Wang. Stochastic assessment of the GPS measurements for precise positioning [A]. ION GPS 98 [C]. NT: Nashville, 1998.81 - 89.
  • 9王正明 等.弹道跟踪数据的校准与评估[M].长沙:国防科技大学出版社,1999..
  • 10Chan-Woo Park, Jonathan P How, Larry Capots. Sensing technologies for formation flying spacecraft in LEO using CDGPS and an inter-spacecraft communication system[A]. ION GPS 2000[C] .UT: Salt lake City,2000. 1595 - 1607.

二级参考文献24

  • 1於宗俦.方差——协方差分量极大似然估计的通用公式[J].测绘学报,1994,23(1):6-13. 被引量:10
  • 2[2]Burns R, McLaughlin C A, Leitner J, et al. TechSat 21: Formation design, control, and simulation. IEEE Proceedings of Aerospace Conference, 2000, 7:19~25
  • 3[3]Sedwick R J, Kong E M C, Miller D W. Exploiting orbital dynamics and micropropulsion for aperture synthesis using distributed satellite systems: Applications to TechSat 21. AIAA-98-5298, 1998
  • 4[4]Massonnet D. Capabilities and limitations of the interferometric cartwheel. IEEE Trans on Geoscience and Remote Sensing, 2001, 39(3): 506~520
  • 5[5]Massonnet D, Thouvenot E, Ramongassie S, et al. A wheel of passive radar microsats for upgrading existing SAR projects. Proceedings of International Geoscience and Remote Sensing Symposiun 2000,IGARSS'2000, 3:1000~1003
  • 6[6]Ramongassie S, Phalippou L, Thouvenot E, et al. Preliminary design of the payload for the interferometric cartwheel. Proceedings of International Geoscience and Remote Sensing Symposiun 2000, IGARSS'2000,3:1004~1006
  • 7[7]Krieger G, Fiedler H, Mittermayer J, et al. Analysis of multistatic configurations for spaceborne SAR interferometry. IEE Proceedings Radar Sonar Navigation, 2003, 150(3): 87~96
  • 8[8]Fiedler H, Krieger G, Jochim F, et al. Analysis of satellite configurations for spaceborne SAR interferometry. International Symposium Formation Flying Mission & Technologies, 2002, Toulouse,France
  • 9[9]Sabol C, Burns R, McLaughlin C A. Formation Flying Design and Evolution. AAS 99-121, Space Flight Mechanics 99, Vol. 102 of Advances in the Astronautical Sciences, 1999, 265~284
  • 10[1]SEEBER G.1993: Satellite Geodesy: Foundations,Methods,and Applications [ M ].Berlin,New York:Walter de Gruyter,1993.

共引文献109

同被引文献15

  • 1李博峰.混合整数GNSS函数模型及随机模型参数估计理论与方法[D].上海:同济大学,2010.
  • 2Gardan G P. A Comparison of Four Method of Weighting Double-Difference Pseudo-Range Measurements [J]. Trans Tasman Surveyor, Canberra, Australia, 1995(1)= 60-66.
  • 3Borre K. Time Series Analysis of GPS Observables[C]. ION GPS 2000, Salt Lake City, USA, 2000.
  • 4Becerra G E V. Analysis of the Stochastics of GPS Observ- ables[R]. The Ohio State University, 2008.
  • 5Bakker P F, Tiberius C C J M, Marel H, et al. Short and Zero Baseline Analysis of GPS L1 C/A, L5Q, GLOVE E1B, and ESaQ Signals [J]. GPS Solut, 2011(1).
  • 6Wang Jianguo, Gopaul N, Scherzinger B. Simplified Algo- rithms of Variance Component Estimation for Static and Ki- nematic GPS Single Point Positioning [J]. Journal of Glob- al Positioning Systems, 2009, 8(2): 43-52.
  • 7Amiri-Simkooei A R, Asce M, Zangeneh-Nejad F, et al. Least-Squares Variance Component Estimation Applied to GPS Geometry-based Observation Model[J]. Journal of Surveying Engineering, 2013, 139(4): 176-187.
  • 8戴吾蛟,丁晓利,朱建军.基于观测值质量指标的GPS观测量随机模型分析[J].武汉大学学报(信息科学版),2008,33(7):718-722. 被引量:41
  • 9曹轶之,隋立芬,王冰.顾及时间相关噪声的单频GPS精密单点定位[J].测绘科学技术学报,2010,27(1):23-26. 被引量:1
  • 10周泽波,沈云中,李博峰.GPS/Doppler导航随机模型的移动窗口实时估计算法[J].测绘学报,2011,40(2):220-225. 被引量:5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部