期刊文献+

一种改进的粒子群优化算法及其仿真 被引量:6

An Improved Particle Swarm Optimization and Simulation
下载PDF
导出
摘要 粒子群优化算法(particle swarm optimization,PSO)是一种新兴的优化技术,其思想来源于人工生命和演化计算理论。PSO算法具有简单、易实现、可调参数少等特点,在很多领域得到了广泛应用。但PSO算法存在早熟收敛问题。为了克服粒子群优化算法的早熟收敛问题,提出了一种旨在保持种群多样性的改进PSO(IPSO)算法,以提高PSO算法摆脱局部极小点的能力。通过对3种Benchmark函数的测试,结果表明IPSO算法不仅具有较快的收敛速度、有效的全局收敛性能,而且还具有良好的稳定性。 Particle swarm optimization (PSO) algorithm is a new optimization technique originating from artificial life and evolutionary computation. PSO is easily understood, realized. PSO has few parameters need to be tuned, and has been applied widely. To overcome the problem of premature convergence on PSO, proposes an improved particle swarm optimization (IPSO), which is guaranteed to keep the diversity of the particle swarm and to improve performance of basic PSO algorithm. Three benchmark functions are selected as the test functions. The experimental results show that the IPSO can not only significantly speed up the convergence, effectively solve the premature eonvergenee problem, but also have good stability.
出处 《计算机技术与发展》 2007年第11期88-91,共4页 Computer Technology and Development
基金 安徽省高校青年教师科研资助项目(2006jq1244)
关键词 粒子群优化 改进的粒子群优化 群体智能 进化计算 particle swarm optimization improved particle swarm optimization swarm intelligence evolutionary computation
  • 相关文献

参考文献12

  • 1Kennedy J,Eberhart R.Particle swarm optimization[C]//In:IEEE International Conference on Neural Networks.Perth,Australia:[s.n.],1995:1942-1948.
  • 2Eberhart R,Kennedy J.A new optimizer using particle sw-arm theory[C]//In:Proc.of the sixth international symposium on Micro Machine and Human Science.Nagoya,Japan:[s.n.],1995:39-43.
  • 3Eberhart R,Shi Y.Particle swarm optimization:developments applications and resources[C]//In:Proc.Congress on Evolutionary Computation.Piscataway,NJ:[s.n.],2001:81-86.
  • 4Angeline P J.Evolutionary optimization versus particle swarm optimization:philosophy and performance differences[C]//In:Proc.of the seventh Annual Conf.on Evolutionary Programm-ing.Germany:Springer,1998:601-610.
  • 5Shi Y,Eberhart R.Empirical study of particle swarm optimization[C]//Proc.of Congress on Computational Intelligence.Washington DC,USA:[s.n.],1999:1945 -1950.
  • 6Angeline P.Using selection to improve particle swarm optimization[C]//In:Proc.of IJCNNp99.Washington,USA:[s.n.],1999:84-89.
  • 7Clere M.The swarm and the queen:towards a determinisitic and adaptive particle swarm optimization[C]//In:Proc.of the Congress of Evolutionary Computation.Piscataway,NJ:[s.n.],1999:1951-1957.
  • 8Suganthan P.Particle swarm optimizer with neighbourhood operator[C]//In:Proc.of Congress on Evolutionary Compuration.Piscataway,NJ:[s.n.],1999:1958-1961.
  • 9Shi Y,Eberhart R.Fuzzy adaptive particle swarm optimization[C]//In:Proc.of the Congress on Evolutionary Computation.Seoul,Korea:[s.n.],2001:101-106.
  • 10Van den Bergh F,Engelbrecht A.Using cooperative particle swarm optimization to train product unit neural networks[C]//In:Proc.of the third Genetic and Evolutionary computation conference.Washingtong D C,USA:[s.n.],2001:84-90.

同被引文献50

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部