期刊文献+

可变粒子的二组元有限扩散凝聚集团的多重分形谱 被引量:1

Multifractal spectrum of the two-component DLA cluster with variable particles
下载PDF
导出
摘要 采用蒙特卡罗方法,模拟了可变粒子的二组元有限扩散凝聚(DLA)集团。获得了二组元DLA集团的斑图结构,计算了二组元DLA集团的分维和多重分形谱,结果表明:加入少量的大粒子,二组元DLA各向异性的结构变得更加明显,而当大粒子浓度上升到一定程度时,二组元DLA斑图结构趋于一组元DLA,当大粒子浓度等于100%时,两组元DLA斑图结构与一组元DLA一样;随着大粒子浓度的上升,多重分形谱的谱宽Δα=αmax-αmin先达到一个最大值,然后随着浓度的继续增加而下降,最后接近一组元DLA的谱宽。  In this paper, the two-component DLA cluster is simulated by Monte Carlo method. The fractal dimension and multifractal spectrum are calculated. The results show: when putting a few large particles into the cluster, the anisotropic, structure of the two-component DLA becomes more obvious, but when the concentration of large particles rises to certain degree, the structure of two-component DLA is very similar to one-component DLA; simultaneously, with the rising of the concentration of large particles, the width of multifractal spectrum Δ α = α max- α min achieves first a maximum value, then decreases along with the density continuous increases, and finally approaches the width of multifractal spectrum of one-component DLA.
出处 《武汉科技学院学报》 2007年第7期5-8,共4页 Journal of Wuhan Institute of Science and Technology
基金 湖北省教育厅项目(项目编号:20001B29001) 湖北省自然基金项目(项目编号:2003ABA057)
关键词 蒙特卡罗方法 二组元DLA 多重分形谱 Monte Carlo method the two-component DLA cluster multifractal
  • 相关文献

参考文献9

  • 1T.A. Witten , L. M. Sander. Diffusion-limited Aggregation, a Kinetic Critical Phenomenon[J]. Physical Review Letters, 1981,47(19):1400-1403.
  • 2T. A. Witten, L. M. Sander. Diffusion-limited Aggregation[J]. Physical Review B., 1983,27:5686.
  • 3T. Nagatani, E Sagues. Morphological Changes in Convection-diffusion-limited Deposition[J]. Physical Review A., 1991,43:2970.
  • 4A. Kuhn, E Argoul, J. F. Muzy and etal. Structural Analysis of Electroless Deposits in the Diffusion-limited Regime[J]. Physical Review Letters, 1994,73:2998.
  • 5B.A. Daniel, et al. Diffusion-limited One-species Reactions in the Bethe Lattice[J]. J. Phys.:Condens. Matter, 2007,17:065107.
  • 6P. Ossadnik, C. H. Lam, L. M. Sander. Nonuniversal Diffusion-limited Aggregation and Exact Fractal Dimensions[J]. Physical Review E., 1994,49:R1788.
  • 7Z.J. Tan, X. W. Zou, W. B. Zhang , etal.. Influence of Particle Size on Diffusion-limited Aggregation[J]. Physical Review E., 1999,60:6202.
  • 8J. P. Tian , K. L. Yao. Viscous Fingering in Correlated Site-bond Square Lattice[J]. Chinese Physical Letters,2001,18:544.
  • 9T.C. Halsey, M. H. Jensen, L. P. Kadanoff, etal. Fractal Measure and Ttheir Singularities: The characterization of strange sets[J]. Physical. Review A., 1986,33:1141.

同被引文献13

  • 1T. A. Witten, L. M. Sander. ,Phys. Rev. Lett[J]. 47,1400,1981.
  • 2T. A. Witten, L. M. Sander. phys. Rev. B[J]. 27, 5686, 1983.
  • 3T. Vicsek. fractal Growth phenomena[Z].World Scientic, Singapore, 1989.
  • 4E Meakin. Phys. Rev. A[J].27, 1495,1983; 27,604,1983; 27,2616,1983.
  • 5A. Erzan, L.Pietronero, A. Vespignani. Rev. Mod. Phys. [J].67,545,1995.
  • 6D. A. Kessler, Z. Olami, J. Oz, I. Procaccia, et al.. Phys. Rev. E [J].57,6913,1998.
  • 7B. Derrida, V. hakim, J. Vannimenus, Phys. Rev. A[J]. 43, 888(1991).
  • 8H. honjo, S. Ohta. Phys. Rev. E[J].57, 6202,1998.
  • 9E Ossadnik, C. H. Lain, L. M. Sander. Phys. Rev. E[J].49, R1788,1994.
  • 10Z. J. Tan, X. W. Zou, W. B. Zhang, et al.. Phys. Rev. E[J].60, 6202,1999.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部