摘要
F是任意的一个域,T2(F)表示F上2×2三角矩阵代数,刻画了T2(F)到自身满足f(A)f(B)=f(B)f(A),当且仅当AB=BA的加法满射f的形式,同时得到T2(F)到自身满足A1A2…Ak=Ak Ak-1…A1,当且仅当g(A1)g(A2)…g(Ak)=g(Ak)g(Ak-1)…g(A1)的加法映射g形式和T2(F)到自身满足A1A2…Ak=Aτ(1)Aτ(2)…Aτ(k),当且仅当h(A1)h(A2)…h(Ak)=h(Aτ(1))h(Aτ(2))…h(Aτ(k))的加法映射h形式,其中τ∈Sk,S k是k元对称群。
Let F is a field, T2(F) be the set of all 2× 2 triangular matrices overF. We characterize the additive surjective map on T2 (F) and f(A)f(B) = f(B)f(A) if and only if AB = BA. And we characterize the additive surjective map on T2 (F) satisfying A1A2…AK=AkAK-1…A1, if and only ifg(A,)g(A2)…g(Ak) = g(Ak)g(Ak-1… g(A1) and satisfying A1A2…Ak=Aτ(1)Aτ(2)…Aτ(k) if and only if h(A1)h(A2)…h(Ak) = h(Aτ(1))h(Aτ(2))…h(Aτ(k), where τ∈Sk,Sk is the symmetric group on k elemems.
出处
《齐齐哈尔大学学报(自然科学版)》
2007年第5期73-75,共3页
Journal of Qiqihar University(Natural Science Edition)
基金
黑龙江省教育厅科学技术研究项目(11521313)
关键词
域
2×2三角矩阵空间
加法满射
交换
field
2× 2 triangular matrix spaces
additive surjective map
commutativity