摘要
利用MATLAB工具箱中的BP神经网络模型建立了旋流器的三层神经网络,提出了旋流器隐层单元数的确定方法,并通过所选择的函数及所构建的网络结构,对网络学习训练得到了14—20—2的预测性能模型,利用所收集的60组样本数据进行训练的结果表明所采用函数和网络结构具有较高精度,由训练得到的权值和阈值对旋流器性能进行预测的结果显示它能满足工程需要。
The three layer neural network model of hydrocyclones was created by BP method of MATLAB package, and the method of determining hidden layer cell number was put forward. By choosing calculation function sets and neural network structure, the prediction performance model for 14-20-2 was gotten by training the network from 60 sets collection appropriate teaching data. The result showed that the network could achieve higher precision. Based on the above, the performance of hydrocyclones was simulated by obtaining weight and bias value, the result showed that the created network structure can satisfy engineering demands.
出处
《流体机械》
CSCD
北大核心
2007年第10期20-24,共5页
Fluid Machinery
基金
国家自然科学基金项目(20376049)