期刊文献+

一类脉冲微分方程解的存在性

The existence on a kind of impulse differential equation solution
下载PDF
导出
摘要 利用Sadovskii不动点定理研究了一类非局部条件下的脉冲泛函微分方程,给出了积分解的一个存在性结果。 A kind of impulse functional differential equation under a nonlocal condition is studied through the Sadovskiis' fixed point theorem in this paper and an existence result of the integral solution is presented too.
作者 常娟
出处 《青海大学学报(自然科学版)》 2007年第5期66-69,共4页 Journal of Qinghai University(Natural Science)
基金 郑州航空工业管理学院青年科研基金资助项目(Q06G063)
关键词 非局部条件 不动点 脉冲 积分解 nonlocal conditions fixed point impulse integral solution
  • 相关文献

参考文献8

  • 1Frigon M,O' Regan D.Existence results for first-order impulsive differential equations[J].Math Anal Appl,1995,193:96-113.
  • 2Benchohra M,Henderson J,Ntouyas S K.An existence result for first-order impulsive functional differential equations in Banach spaces[J].Comput Math Appl,2001,42(10):1303-1310.
  • 3Benchohra M,Henderson J,Ntouyas S K.On first order impulsive semilinear functional differential inclusions[J].Archivum Math,2003,39:129 -139.
  • 4Lin Y,Liu J.Semilinear integrodifferential equations with nonlocal Cauchy problem[J].Nonlinear Anal Theory Methods Appl,1994,26:1023-1033.
  • 5Ntouyas S K,Tsamatos P Ch.Global existence for semilinear evolution equations with nonlocal conditions[J].J Math Anal Appl,1997,210:679-687.
  • 6Benchohra M,Gatsori E,Henderson Let al.Nondensely defined evolution impulsive differential inclusions with nonlocal conditions[J].J Math Anal Appl,2003,286:307-325.
  • 7Guo M,Xue X,Li R.Controllability of impulsive evolution inclusions with nonlocal conditions[J].J Optimization Theory Appl,2004,120:355-374.
  • 8张恭庆,林源渠.泛涵分析讲义(上)[M].北京:北京大学出版社,1987.52-53.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部