摘要
讨论了比无爪图更广泛的图——拟无爪图,得到了以下两个结果:(ⅰ)若图G是拟无爪图,且满足ω(G-S)≤t(G),则2t(G)=κ(G).(ⅱ)若图G是拟无爪图,对于任意的控制集D及任意t∈D,至多存在3点u1,u2,u3∈(V-D)满足N(ui)∩D={t}(i=1,2,3),则γ(G)=i(G),该结果是最好可能的.以上结果扩展了无爪图的相应结果.
The properties of quasi-claw-free graphs were discussed, which are larger than claw-free graphs. The following two resuhs were obtained: if G is a quasi-claw-free graph, then
( i ) 2t(G)=κ(G), where ω(G-S)≤t(G)
( ii ) For every dominating set D and each t E D, there are at most three vetices u1, u2, u3 ∈ ( V - D) satisfying, N( ui )∩D={t}(i=1,2,3), then γ(G) = i(G). This result is the best possible. These results extend the corresponding resuhs in a claw-free graph.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2007年第10期111-113,共3页
Journal of Shandong University(Natural Science)
关键词
拟无爪图
坚韧度
连通度
控制数
独立控制数
quasi-claw-free graph
toughness
connectivity
domination number
independent domination number