期刊文献+

行(列)对称矩阵的Schur分解和正规阵分解 被引量:15

Schur factorization and normal matrices factorization of row(column) symmetric matrices
下载PDF
导出
摘要 提出了行(列)转置矩阵与行(列)反对称矩阵的概念,研究了它们的性质,获得了一些新的结果,给出了行(列)对称矩阵的Schur分解与正规阵分解的公式,它们可极大地减少行(列)对称矩阵的Schur分解与正规阵分解的计算量与存储量. The concept of row (column) transposed matrix and row (column) synunetric matrix were given, and their basic properties were also studied. The formula for the Schur factorization and normal matrix factorization of row (column) symmetric matrix were obtained, all of which can dramatically reduce the amount of calculation and Schur factorization and normal matrix factorization of row (column) symmetric matrix can dramatically save the CPU time and memory without losing any numerical precision.
作者 袁晖坪
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2007年第10期123-126,共4页 Journal of Shandong University(Natural Science)
基金 重庆市自然科学基金资助项目(CSTS2005BB0243) 重庆市教委科技项目基金资助项目(3-10-71)
关键词 行(列)转置矩阵 行(列)对称矩阵 正规矩阵 SCHUR分解 row (column) transposed matrix row (column) symmetric matrix normal matrix Schur factorization
  • 相关文献

参考文献9

二级参考文献21

  • 1秦兆华.矩阵的次转置及实次对称矩阵的次正定性[J].渝州大学学报,1994,11(1):14-18. 被引量:56
  • 2胡永建,陈公宁.有关实正定矩阵的一些性质[J].北京师范大学学报(自然科学版),1996,32(1):40-46. 被引量:21
  • 3王炎生,陈宗基.基于系统矩阵实Schur分解的集结法模型降阶[J].自动化学报,1996,22(5):597-600. 被引量:5
  • 4秦兆华.关于实次对称矩阵与反对称矩阵.西南师范大学学报:自然科学版,1985,(1):100-110.
  • 5北京大学数力系代数教研室.高等代数[M].北京:人民教育出版社,1978..
  • 6Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and Adaptive Control Design[M]. New York: Wiley, 1995.
  • 7Ling Y, Tao G. Adaptive Backstepping Control Design for Linear Multivariable Plant[A]. Proc of IEEE Conf on Decision and Control[C]. Kobe, 1996:2438-2443.
  • 8Imai A K, Costa R R, Hsu L, et al. Multivariable MRAC Using High Frequency Gain Matrix Factorization[A]. Proc of 40th IEEE Conf on Decision and Control[C]. Orlando, 2001:1193-1198.
  • 9Costa R R, Hsu L, Imai A K, et al. Adaptive Backstepping Control Design for MIMO Plants Using Factorization[A]. Proc of the American Control Conf[C]. Archorage, 2002:4601-4606.
  • 10Wu Z J, Xie X J, Zhang S Y. Robust Decentralized Adaptive Stabilization for a Class of Interconnected Systems with Unmodeled Dynamics[J]. Int J of Systems Science, 2004,35(7):389-404.

共引文献154

同被引文献64

引证文献15

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部