期刊文献+

Cz结构浅池内硅熔体热对流的分岔特性

BIFURCATION CHARACTERISTICS OF THERMAL CONVECTION IN A SHALLOW MOLTEN SILICON POOL WITH Cz CONFIGURATION
下载PDF
导出
摘要 为了了解水平温度梯度作用时Czochralski结构浅池内硅熔体热对流的分岔特性,利用有限差分法进行了非稳态三维数值模拟,坩埚外壁被加热,液池深度为3 mm。模拟结果表明,当逐渐增加温差时,会发生两次流型转变,第一次由二维轴对称流动转变为三维稳态流动,第二次由三维稳态流动转变为热流体波,其可能沿顺时针方向旋转、也可能沿逆时针方向旋转,同时,第二次转变存在分岔现象. Three-dimensional numerical simulations of transient thermal convection in a shallow molten silicon pool with Czochralski configuration (depth d=3 mm) have been conducted in this study to understand the bifurcation mechanism of the flow patterns. The crucible sidewall is maintained at constant temperature. The simulation results indicate that two flow transitions occur when radial temperature difference along the free surface increases. At first, the steady two-dimensional flow becomes steady three-dimensional flow and then evolves to the hydrothermal wave when the temperature difference is further increased. This hydrothermal wave is characterized by spoke patterns traveling in either the clockwise or counter-clockwise directions, respectively. It is observed that the bifurcation exists in this transition.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2007年第6期922-924,共3页 Journal of Engineering Thermophysics
基金 国家自然科学(No.50476042)
关键词 热对流 硅熔体 分岔 热流体波 Thermal convection molten silicon bifurcation hydrothermal wave
  • 相关文献

参考文献11

  • 1Yamagishi H, Fusegawa I. Experimental Observation of a Surface Pattern on a Caochralski Silicon Melt. J. Jpn. Assoc. Crystal Growth, 1999, 17(3): 304-311
  • 2Yi K W, Kakimoto K, Eguchi M, et al. Spoke Patterns on Molten Silicon in Czochralski system. J. Crystal Growth, 1994, 144(1): 20-28
  • 3Nakamura S, Eguchi M, Azami T, et al. Thermal Waves of a Nonaxisymmetric Flow in a Czochralski-Type Silicon Melt. J. Crystal Growth, 1999, 207(1): 55-61
  • 4Azami T, Nakamura S, Eguchi M, et al. The Role of Surface-Tension-Driven Flow in the Formation of a Surface Pattern on a Czochralski Silicon Melt. J. Crystal Growth, 2001, 233(1): 99-107
  • 5Li Y R, Imaishi N, Peng L, et al. Thermocapillary Flow in a Shallow Molten Silicon Pool with Czochralski Configuration. J. Crystal Growth, 2004, 266(1): 88-95
  • 6李友荣,彭岚,吴双应,曾丹苓,今石宣之.硅熔体CZ结构浅池内热毛细对流转变滞后特性[J].工程热物理学报,2005,26(z1):155-158. 被引量:1
  • 7Li Y R, Imaishi N, Azami T, et al. Three-Dimensional Oscillatory Flow in a Thin Annular Pool of Silicon Melt. J. Crystal Growth, 2004, 260(1): 28-42
  • 8Li Y R, Peng L, Akiyama Y, et al. Three-Dimensional Numerical Simulation of Thermocapillary Plow of Moderate Prandtl Number Fluid in an Annular Pool. J. Crystal Growth, 2003, 259:374-387
  • 9Peng L, Li Y R, Shi W Y, et al. Three-Dimensional Thermocapillary-Buoyancy Flow of Silicone Oil in a Differentially Heated Annular Pool. Int. J. Heat Mass Transfer, 2007, 50(5-6): 872-880
  • 10Smith M K, Davis S H. Instabilities of Dynamic Thermocapillary Liquid Layers. Part 1. Convective Instabilities. J. Fluid Mech., 1983, 132:119-144

二级参考文献8

  • 1[1]Yamagishi H, Fusegawa Ⅰ. Experimental Observation of a Surface Pattern on a Caochralski Silicon Melt. J. Jpn.Assoc. Crystal Growth, 1999, 17(4): 304-311
  • 2[2]Yi K W, Kakimoto K, Eguchi M, et al. Spoke Patterns on Molten Silicon in Czochralski System. J. Crystal Growth,1994, 144(1): 20-28
  • 3[3]Nakamura S, Eguchi M, Azami T, et al. Thermal Waves of a Nonaxisymmetric Flow in a Czochralski-Type Silicon Melt. J. Crystal Growth, 1999, 207(1-2): 55-61
  • 4[4]Azami T, Nakamura S, Eguchi M, et al. The Role of Surface-Tension-Driven Flow in the Formation of a Surface Pattern on a Czochralski Silicon Melt. J. Crystal Growth, 2001, 233(1-2): 99-107
  • 5[5]Li Yourong, Imaishi N, Peng Lan, et al. Thermocapillary Flow in a Shallow Molten Silicon Pool with Czochralski Configuration. J. Crystal Growth, 2004, 266(1-3): 88-95
  • 6[6]Li Yourong, Imaishi N, Azami T, et al. ThreeDimensional Oscillatory Flow in a Thin Annular Pool of Silicon Melt. J. Crystal Growth, 2004, 260(1-2): 28-42
  • 7[7]Li Yourong, Peng Lan, Akiyama Y, et al. ThreeDimensional Numerical Simulation of Thermocapillary Flow of Moderate Prandtl Number Fluid in an Annular Pool. J. Crystal Growth, 2003, 259(4): 374-387
  • 8[8]Smith M K, Davis S H. Instabilities of Dynamic Thermocapillary Liquid Layers. Part 1. Convective Instabilities.J. Fluid Mech., 1983, 132:119-144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部