期刊文献+

涡轮转速对无导叶对转涡轮流动特性的影响 被引量:7

INFLUENCE OF ROTOR SPEEDS ON FLOW CHARACTERISTICS IN A VANELESS COUNTER-ROTATING TURBINE
下载PDF
导出
摘要 为了探究无导叶对转涡轮在不同涡轮转速下的流动特性,运用CFD方法对某无导叶对转涡轮模型级的流场进行了三维定常多叶片排的数值模拟。结果表明,涡轮转速的变化对无导叶对转涡轮的喉部位置基本没有影响;随涡轮转速的升高,高压动叶内的激波损失增大,低压动叶内的激波损失减小,源生于低压动叶吸力面上的激波沿吸力面向尾缘移动;对于远离设计点的非设计工况,流动分离损失及低压动叶中的激波损失构成了对转涡轮损失中的主体;涡轮转速的变化对高低压动叶出口气流角及高压动叶出口马赫数的影响作用较大;高低压涡轮出功比、对转涡轮的总功率及等熵效率均随涡轮转速的增大而增大。 In order to reveal the flow characteristics under design and off-design rotor speeds, three- dimensional multiblade row steady Navier-Stokes simulations have been performed in a Vaneless Counter-Rotating Turbine (VCRT). Results show that the throat location of the VCRT is not directly dependent on the rotor speeds. The shockwave loss increases in the high pressure turbine. (HPT) rotor and decreases in the low pressure turbine (LPT) rotor as the rotor speeds increase. And when the rotor speeds increase, the shock wave rooted on the suction surface of the LPT rotor will migrate towards the downstream. The results also indicate that the most of loss in the VCRT is consisted of the shockwave loss in the LPT rotor and the flow separation loss under off-design rotor speeds. The effects of the rotor speeds on the flow angle and the Mach number at the outlets of the HPT and the LPT are very strong. The ratio of the specific work of the HPT to that of the LPT, the power, and the isentropic efficiency are all increased when the rotor speeds increase.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2007年第6期925-928,共4页 Journal of Engineering Thermophysics
关键词 对转涡轮 变工况 流动分离 激波 数值模拟 counter-rotating turbine design and off-design conditions flow separation shock wave numerical simulation
  • 相关文献

参考文献12

  • 1W T Wintucky, W L Stewart. Analysis of Two-Stage Counter-Rotating Turbine Efficiencies in Terms of Work and Speed Requirements. NACA RM E57L05, 1958
  • 2J F Louis. Axial Flow Counter-Rotating Turbines. ASME Paper 85-GT-218, 1985
  • 3B A Ponomariov. New Generation of the Small Turboshaft and Turboprop Engines in the USSR. ASME Pa- per 90-GT-195, 1990
  • 4B A Ponomariov, Y V Sotsenko. Using Contra- Rotating Rotors for Decreasing Sizes and Component Number in Small GTE. ASME Paper 92-GT-414, 1992
  • 5Y V Sotsenko. Thermogasdynamic Effects of the Engine Turbines with the Countra-Rotating Rotors. ASME Paper 90-GT-63, 1990
  • 6C W Haldeman, M G Dunn, R S Abhari, et al. Experimental and Computational Investigation of the Time- averaged and Time-resolved Pressure Loading on a Vaneless Counter-Rotating Turbine. ASME Paper 2000-GT- 0445, 2000
  • 7蔡睿贤.对转涡轮基本分析[J].航空学报,1992,13(1). 被引量:22
  • 8B D Keith, D K Basu, C Stevens. Aerodynamic Test Results of Controlled Pressure Ratio Engine (COPE) Dual Spool Air Turbine Rotating Rig. ASME Paper 2000-GT- 0632, 2000
  • 9M M Weaver, S R Manwaring, R S Abhari, et al. Forcing Function Measurements and Predictions of a Transonic Vaneless Counter Rotating Turbine. ASME Paper 2000- GT-0375, 2000
  • 10H S Wang, J Z Xu, X L Zhao, et al. Numerical Investigation on Performance of Vaneless Counter-Rotating Turbine. ISABE Paper 2005-1159, 2005

二级参考文献9

  • 1王会社,赵庆军,赵晓路,徐建中.1+1/2对转涡轮中激波结构的数值研究[J].工程热物理学报,2005,26(2):225-227. 被引量:17
  • 2JI Lu-cheng,QUAN Xiao-bo,LI Wei,et at.A vaneless counter-rotating turbine design towards limit of specific work ratio[ R].ISABE 2001-1062,2001.
  • 3季路成,肖祥,陈江,等.1+1/2对转涡轮设计及控制方法探索[C].中国工程热物理学会热机气动热力学学术会议论文,2003.
  • 4JI Lu-cheng,XIANG Lin,HUANG Hai-bo,et al.The revelations from the research about the vaneless counter-rotating turbine[ R].ISABE 2003-1040,2003.
  • 5赵庆军,王会社,赵晓路,等.1+1/2对转涡轮三维流场数值分析[C].中国工程热物理学会热机气动热力学学术会议论文,2004.
  • 6王会社,赵庆军,赵晓路,等.1+1/2对转涡轮中激波/叶排相互作用的数值研究[C].中国工程热物理学会热机气动热力学学术会议论文,2004.
  • 7季路成,钟文涛,徐建中.关于1+1/2对转涡轮的基本分析和初步设计[J].工程热物理学报,2001,22(2):167-170. 被引量:16
  • 8季路成,黄海波,徐建中,陈江.1+1/2对转涡轮应用中的关键技术问题[J].工程热物理学报,2003,24(1):35-38. 被引量:17
  • 9蔡睿贤.对转涡轮基本分析[J].航空学报,1992,13(1). 被引量:22

共引文献35

同被引文献45

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部