期刊文献+

异结构系统混沌同步及其在保密通信中的应用 被引量:39

Synchronization of different structure chaotic systems and the application in secure communication
下载PDF
导出
摘要 根据Lyapunov稳定性定理,利用Lyapunov直接法在响应系统中构造非线性函数,实现了2个不同混沌系统的完全同步,并证明了2个系统同步误差的零点稳定性,又利用基于Matlab的Similink技术进行数值仿真,并将同步的2个系统用于混沌遮掩与混沌参数调制保密通信中。仿真结果表明,该方法能容易地实现2个混沌系统同步,可将其用在基于混沌系统同步的保密通信中。 Based on Lyapunov stability theory and used the Lyapunov's direct method by designing a nonlinear function in the response system to realize two different chaotic systems globally synchronized, the stability in zero of the error dynamical system of two systems was also verified. The technique of Similink based on Matlab was used for numerical simulation and the two synchronized systems were used in chaotic masking and parameter modulation secure communication. The simulation results showed that, the method realized synchronization of two chaotic systems easily and the method could be applied in the secure communication based on chaotic synchronization.
出处 《通信学报》 EI CSCD 北大核心 2007年第10期73-78,共6页 Journal on Communications
基金 国家自然科学基金资助项目(60672011)~~
关键词 混沌同步 保密通信 异结构 LYAPUNOV函数 chaos synchronization secure communication different structure Lyapunov function
  • 相关文献

参考文献13

  • 1PECORA L M,CARROLL T L.Synchronization in chaotic systems[J].Phys Rev Lett,1990,64:821-830.
  • 2LV J H,CHEN G R,CNG D Z,et al.Bridge the gap between the Lorenz system and Chen system[J].Int J Bifurcat Chaos,2002,12:2917-2926.
  • 3LORENZ E N.Deterministic nonperiodic flow[J].J Atoms Sci,1963,20(1):130-141.
  • 4ROSSLER O E.An equation for continuous chaos[J].Phys Lett A,1976,57:397-398.
  • 5SOLTINE J J E,LI W P.Applied Nonlinear Control[M].Beijing:China Machine Press,2006.
  • 6陈宇环,易称福,张小红.基于Lyapunov稳定性定理的混沌同步研究与应用[J].江西理工大学学报,2006,27(3):34-37. 被引量:6
  • 7PARK J H.On synchronization of unified chaotic systems via nonlinear control[J].Chaos,Solitons and Fractals,2005,25:699-704.
  • 8孙克辉,陈志盛,张泰山.统一混沌系统的自适应控制同步[J].控制与决策,2005,20(2):207-209. 被引量:11
  • 9YAN Z Y. Chaos Q-S synchronization between rossler system and the new unified chaotic system[J]. Physics Letters A, 2005,334:406-412.
  • 10AGIZA H N.Synchronization of rossler and chen chaotic dynamical systems using active control[J].Physics Letters A,2001,278:191-197.

二级参考文献12

  • 1方锦清.非线性系统中混沌的控制与同步及其应用前景(一)[J].物理学进展,1996,16(1):1-74. 被引量:137
  • 2Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Physical Review Letters, 1990, 64 (8) : 821-824
  • 3Lu J H, Chen G R, Zhang S C. Dynamical analysis of anew chaotic attractor coined [J]. Int J of Bifurcation and chaos,2002,12(5):1001-1015.
  • 4Chen S H, Yang Q, Wang C P. Impulsive control and synchronization of unified chaotic system[J]. Chaos,Solitons and Fractals, 2004,20 (4) : 751-758.
  • 5Lu J H, Chen G R. A new chaotic attractor coined[J].Int J of Bifurcation and Chaos, 2002,12 (3) : 659-661.
  • 6Vanecek A, Celikovsky S. Control systems: From linear analysis to synthesis of chaos [M]. London: Pretice-Hall, 1996.
  • 7Lu J A, Wu X Q, Lti J H. Synchronization of a unified chaotic system and the application in seeure communication [J]. Physics Letters A, 2002,305: 365-370.
  • 8Jolly K, John, Amritkar R E. Synchronization of unstable orbits using adaptive[J]. Physica E, 1994,49:4843-4848.
  • 9He R, Vaidya P G. Analysis and synthesis of synchronous periodic and chaotic system[J]. Physical Review A, 1992,46(12) : 7387-7392.
  • 10Pecora L M, Carroll T L. Synchronization in chaotic systems[J].Phys Rev Lett, 1990, 64:821 -824.

共引文献15

同被引文献358

引证文献39

二级引证文献151

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部