摘要
根据Lyapunov稳定性定理,利用Lyapunov直接法在响应系统中构造非线性函数,实现了2个不同混沌系统的完全同步,并证明了2个系统同步误差的零点稳定性,又利用基于Matlab的Similink技术进行数值仿真,并将同步的2个系统用于混沌遮掩与混沌参数调制保密通信中。仿真结果表明,该方法能容易地实现2个混沌系统同步,可将其用在基于混沌系统同步的保密通信中。
Based on Lyapunov stability theory and used the Lyapunov's direct method by designing a nonlinear function in the response system to realize two different chaotic systems globally synchronized, the stability in zero of the error dynamical system of two systems was also verified. The technique of Similink based on Matlab was used for numerical simulation and the two synchronized systems were used in chaotic masking and parameter modulation secure communication. The simulation results showed that, the method realized synchronization of two chaotic systems easily and the method could be applied in the secure communication based on chaotic synchronization.
出处
《通信学报》
EI
CSCD
北大核心
2007年第10期73-78,共6页
Journal on Communications
基金
国家自然科学基金资助项目(60672011)~~
关键词
混沌同步
保密通信
异结构
LYAPUNOV函数
chaos synchronization
secure communication
different structure
Lyapunov function