期刊文献+

金属丝弹性模量的测量方法研究 被引量:4

Measurement Study for Elastic Modulus of Metal Wires
下载PDF
导出
摘要 通过用纳米压入法和静态拉伸法对β-Ti丝、不锈钢丝以及3种NiTi丝进行弹性模量的测量。实验表明,纳米压入法弹性模量比静态拉伸法弹性模量大,并且材料的弹性模量越低,二者相差越大,其原因同试样的表面硬化层和尺寸效应有关。通过分析比较,建立了金属丝弹性模量的纳米压入法和静态拉伸法所得值之间的相关关系。 The elastic modulus of β-Ti wire, stainless steel wire and three kinds of NiTi wires were measured by nanoindentation method and static tension method. The results showed that the elastic modulus by nanoindentation method were lager than that by the static tension method; the lower elastic modulus of materials, the greater difference between these two methods. The reason for that might be attributed to the surface hardened layer and size effect of specimens. Through data analysis, an approximate relationship between elastic modulus of nanoindentation method and elastic modulus of static tension method was set up.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2007年第10期1776-1779,共4页 Rare Metal Materials and Engineering
基金 国家自然科学基金(50571017) 北京市自然科学基金(2042015)
关键词 纳米压入 金属丝 弹性模量 光杠杆 nanoindentation metal wire elastic modulus optical lever
  • 相关文献

参考文献7

  • 1Zhang Taihua(张泰华). Micro/Nano-Mechanical Testing Technology and Its Application(微/纳米力学测试技术及其应用)[M]. Beijing: Machinery Industry Press, 2004:5
  • 2LinZhi(林志) WangYanli(王艳丽) LinJunpin(林均品)etal.航空材料学报,2001,21(4):53-53.
  • 3Oliver W C, Pharr G M, Pharr G M. Journal of Materials Research[J], 1992, 7(6): 1564
  • 4Cheng Y T, Li Z, Cheng C M, MRS Proceedings[C], Warrendale: MRS, 2001
  • 5Cheng Y T, Cheng C M. Applied Physics Letters[J], 1998, 73(5): 614
  • 6马德军,刘建敏,Chung Wo Ong,何家文.材料杨氏模量的纳米压入识别[J].中国科学(E辑),2004,34(5):493-509. 被引量:6
  • 7Lin Shu(林抒),Gong Zhenxiong(龚镇雄),General Physics Experiment(普通物理实验)[M].Beijing:People's Education Press,1981:48

二级参考文献17

  • 1Pethica J B, Hutchings R, Oliver W C. Hardness measurement at penetration depth as small as 20 nm. Phil Mag A, 1983, 48(4): 593-606
  • 2Loubet J L, Georges J M, Marchesini O, et al. Vickers indentation curves of magnesium oxide (MgO). J Tribology, 1984, 106(1): 43-48
  • 3Newey D, Wilkens M A, Pollock H M. An ultra-low-load penetration hardness tester. J Phys E: Sci Instrum,1982, 15(1): 119-122
  • 4Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res, 1992, 7(6): 1564-1583
  • 5Pharr G M, Oliver W C, Brotzen F R. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J Mater Res, 1992, 7(3): 613617
  • 6Cheng Y T, Li Z, Cheng C M. in Fundamentals of Nanoindentation and Nanotribology Ⅱ. Baker S P, Cook R F, Corcoran S G, et al, eds. MRS Proc 649, Warrendale, 2001. Q1.1
  • 7Cheng Y T, Cheng C M. Relationships between hardness, elastic modulus, and the work of indentation.Appl Phys Lett, 1998, 73(5): 614-616
  • 8Giannakopoulos A E, Suresh S. Determination of elastoplastic properties by instrumented sharp indentation.Scripta Mater, 1999, 40(10): 1191-1198
  • 9Venkatesh T A, Van Vliet K J, Giannakopoulos A E, et al. Determination of elasto-plastic properties by instrumented sharp indentation: guidelines for property extraction. Scripta Mater, 2000, 42(9): 833-839
  • 10Dao M, Chollacoop N, Van Vliet K J, et al. Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater, 2001,49(19): 3899-3918

共引文献6

同被引文献28

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部