期刊文献+

铝合金材料AA-6061-T6和AA-6061-OA的动态拉伸力学性能(英文) 被引量:7

Dynamic Tensile Deformation of Aluminum Alloy 6061-T6 and 6061-OA
下载PDF
导出
摘要 铝合金材料蜂窝夹层板结构具有在较低体重情况下的高硬度和高抗冲击性能力。近年来许多关于其在低应变率下冲击能量吸收性质的文献纷纷涌现,但是对于其在高应变率下的能量吸收力学性能的研究却非常贫乏。为了更好地研究铝合金材料蜂窝夹层板结构在高应变率下的能量吸收力学性能,其结构组成材料本身的动态力学性能必须首先得到充分研究。本文介绍和总结了铝合金材料AA-6061的两种热处理成品,T6与OA,在室温(24℃)与低温( -170℃)下的动态拉伸力学性能。在本研究中,霍普金生拉伸杆被应用,拉伸应变率为103每秒。 Aluminum-based sandwich panels with textile cores possess high stiffness and strength at low weight. Recent works have documented the energy absorbing characteristics of these materials at low strain rates. However, very little information exists on the energy absorption of these structures at high strain rates. In order to address this, the behavior of their individual constituents over a range of strain rates is first needed. In this paper the quasi- static and dynamic tension deformation behaviors of aluminum alloy 6061 in two different heat treatments -- T6 and over-aged (OA) -- are reported at both room and low test temperatures.
出处 《实验力学》 CSCD 北大核心 2007年第3期305-313,共9页 Journal of Experimental Mechanics
基金 The author would like to acknowledge financial support fromthe Office of Naval Research grant ONR-N0014-03-1-0351 material supply from ALCOA Professor H G Wadley of the University of Virginia
关键词 铝合金材料AA-6061-T6/OA 室温(24℃)与低温(-170℃)试验 霍普金生拉伸杆 高应变率 high-strain-rate experiment Split-Hopkinson Tension Bar (SHTB) A1-6061-T6and OA lower-than-room temperature tests
  • 相关文献

参考文献23

  • 1Howard G Allen. Analysis and Design of Structural Sandwich Panels[M]. 1st edition, Volume 1, Chapter 1, Pergamon Press, 1969:1-46.
  • 2Albert G H Dietz. Keynote Address in Conterence on Sandwich Panel Design Criteria[M]. Washington, D. C. , National Academy of Science-National Research Council, 1959.
  • 3Gregory W Kooistra, Vikram S Deshpande, Haydn N G. Wadley. Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminium[J]. Acta Materialia, 2004,52(14):4229-4237.
  • 4David J S, Wadley N G W. Cellular metal truss core sandwich structures[J]. Advanced Engineering Materials, 2002,10.
  • 5Kobayashi T. Strength and fracture of aluminum alloys[J]. Materials science and Engineering, 2000, A280 : 8- 16.
  • 6Richard K, Klaus H, Bruno G. Energy-absorbing behavior of aluminum foams: head impact tests on the A-Pillar of a car[J]. Advanced Engineering Materials, 2002,10.
  • 7Dong-Kuk K, Sunghak L. Impact energy absorption of aluminum extruded tubes with differenticross-sectional shapes[J]. Material and Design, 1999,20: 41-49.
  • 8Kezhun L, Werner G. Impact Aluminum Plates by Tumbling Projectiles: Experimental study[J], international Journal of Impact Engineering, 1999,18(1): 23-43.
  • 9Auzanneau T, Sato C. Mechanical behavior of aluminum foils as micro structural material under low velocity impact loading[J]. Microsystem Technologies, 2003,9.. 183-187.
  • 10Paul A, Ramamurty U. Strain rate sensitivity of a closed-cell aluminum foam[J]. Material science and Engineering, 2000,A281: 1-7.

同被引文献45

引证文献7

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部