期刊文献+

多壁碳纳米管-高聚物纳米复合材料的抗蠕变性能(英文) 被引量:1

Creep Resistance of MWNT-Polymer Nanocomposites
下载PDF
导出
摘要 通过双螺杆挤出机和模压成型设备制备了两种不同长径比的多壁碳纳米管( MWNT)增强的聚丙烯(PP)纳米复合材料。实验表明,通过添加1 %体积含量的MWNT,聚丙烯的抗蠕变性能得到很大提高,即长时间加载后,基体的蠕变变形量和蠕变率均显著降低。同时,在特定载荷下,纳米复合材料的蠕变寿命比纯基体提高了10倍。几种载荷传递机理导致了材料抗蠕变性能的增强:(1)碳纳米管和基体之间较好的界面性能,(2)碳纳米管限制了基体内无定型分子链的活动性,以及(3)碳纳米管的较高的长径比。差分热扫描(DSC)的结果显示了材料蠕变前后结晶的变化和载荷传递机理分析是一致的。这些实验结果显示,在不增加成本的基础上可以大大提高抗蠕变的聚合物纳米复合材料的工程应用。 Polypropylene (PP) nanocomposites filled with shorter- and longer-aspect-ratio multiwalled carbon nanotubes (MWNTs) were compounded using a twin-screw extruder and an injection moulding machine. It is shown that with only 1 vol. % of MWNTs, creep resistance of PP can be significantly improved with reduced creep deformation and creep rate at a long-term loading period. Additionally, the creep lifetime of the nanocomposites has been considerably extended by 1000% compared to that of neat PP. Three possible mechanisms of load transfer were considered that could contribute to the observed enhancement of creep resistance, which are (1) fairly good interfacial strength between MWNTs and polymer matrix, (2) increasing immobility of amorphous regions due to nanotubes acting as restriction sites, and (3) high aspect ratio of MWNTs. Differential scanning calorimetry (DSC) results showing crystallinity changes in the specimens before and after creep deformation present evidence to confirm these mechanisms. Our results should lead to improved grades of creep resistant polymer nanocomposites for engineering applications.
出处 《实验力学》 CSCD 北大核心 2007年第3期337-345,共9页 Journal of Experimental Mechanics
关键词 蠕变 纳米复合材料 聚丙烯 碳纳米管 栽荷传递 creep nanocomposites polypropylene carbon nanotubes load transfer
  • 相关文献

参考文献32

  • 1Ward I M. Mechanical Properties of Solid Polymers[M]. John Wiley & Sons Ltd, Chichester 1983.
  • 2Findley W N, Lai J S, Onaran K. Creep and relaxation of nonlinear viscoelastic materials[M]. Dover Publications, Inc, New York 1989.
  • 3Ajayan P M, Schadler L S, Braun P V. Nanocomposite science and technology[M]. Wiley-VCH, Weinheim 2003.
  • 4Nicolais L, Carotenuto G. Metal-Polymer Nanocomposites[M]. John Wiley& Sons, Inc. , Hoboken 2005.
  • 5Taneike M, Abe F, Sawada K. Nature, 2003, 424:294.
  • 6Zhang Z, Yang J L, Friedrich K. Polymer, 2004, 45:3481.
  • 7Vlasveld D P N, Bersee H E N, Picken S J. Polymer, 2005, 46: 12539.
  • 8Yang J L, Zhang Z, Schlarb A K, Friedrich K. Polymer, 2006, 47:2791.
  • 9IIjima S. Nature, 1991, 354: 56.
  • 10Popov V N. Mater. Sci. Eng. R., 2004, 43: 61.

同被引文献13

  • 1姜云鹏,岳珠峰.高温环境下纤维复合材料蠕变损伤的细观机理研究[J].力学季刊,2004,25(4):523-527. 被引量:1
  • 2卢锡年 谢长春.纤维增强聚合物的蠕变.复合材料学报,1985,2(2):69-74.
  • 3Raghavan J, Meshii M. Creep of polymer composites. Composites Science and Technology[J], 1997(57): 1673- 1687.
  • 4Bechwith S W. Creep evaluation of a glass/epoxy composite[J]. SAMPE Quarterly, 1980, 11(2). 8- 15.
  • 5Sturgeon J B, Butt R I, Larke L W. Creep of carbon fiber reinforced plastics[R]. AD A041295. 1976.
  • 6Brinson H F, Morris D H, Yeow YT. Proc 6th Int. Conf. Exp. Stress Anal. [C]. Munchen: 1978.
  • 7Nunez Adrian J, Marcovich Nonna E. Analysis of the creep behavior of polypropylene- woodflour composites. Polymer Engineering and Science[J], 2004, 44(8): 1594-1603.
  • 8Muliana Anatasia, Haj - Ali Rami. A sublaminate model for creep buckling analysis of thick - section FRP composite structures. 46th AIAA/ASME/ASCE/AHS/ASC Stuctures, Structural Dynamics & Materails Confer[C]. Austin: 2005.
  • 9Dean Derrick, Husband Mark, Trimmer Mark. Time- temperature- dependent behavior of a substituted poly(paraphenylene) : tensile, creep, and dynamic mechanical properties in the glassy state[J]. Journal of Polymer Science: Part B: Polymer Physics, 1998, 70: 2971 - 2979.
  • 10谢丹,薛峰,过松如.物理老化对环氧树脂蠕变性能的影响[c].第十一届全国复合材料学术会议.合肥:2001.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部