期刊文献+

Orbifold上的群作用(英文) 被引量:1

Group actions on orbifolds
下载PDF
导出
摘要 Orbifold及其上的twisted sectors被称为stringy orbifold.近年来陈伟民和阮勇斌教授发展了一种新的orbifold上同调理论.作者研究了stringy orbifold上的群作用并以该理论为基础给出弦等变上同调. An orbifold is called "stringy orbifold" if we refer it as the orbifold itself with its twisted sectors. Recently, Chen and Ruan have developed a new cohomology theory of orbifolds. In this paper, the group action on stringy orbifolds is studied and the stringy equivariant cohomology group is obtained based on their theory.
作者 罗伟
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第5期941-944,共4页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(10771146)
关键词 TWISTED SECTOR 良作用 弦等变上同调群 twisted sector, good action, stringy equivariant cohomology group
  • 相关文献

参考文献5

  • 1Chen W, Ruan Y. Orbifold Gromov-Witten theory[ J ]. math. AG/0005198.
  • 2Chen W, Ruan Y. A new oohomology theory for orbifolds[J], math. AG/0004129.
  • 3Ruan Y. Stringy geometry and topology of orbifolds [J ]. math. AG/0011149.
  • 4Thurston W. The geometry and topology of three-manifolds, Princeton lecture notes [ M ]. Berlin: SpringerVerlag, 1979.
  • 5Ruan Y. Discrete torsion and twisted orbifold cohomology[J ]. math. AG/0005299.

同被引文献10

  • 1陈钢.Orbifold上的积分[J].四川大学学报(自然科学版),2004,41(5):931-939. 被引量:1
  • 2Satake I. The Gauss-Bonntet theorem for V-manifolds[J], journal of the Mathematical Society of Japan, 1957, 9(4):464.
  • 3Jiang Y F. The Chen-Ruan cohomology of weighted projetive space [EB/OL]. http: /// arxiv, org/abs/ math/0304140, 2003.
  • 4Park B D, Poddar M. The Chen-Ruan cohomlogy ring of mirror quintic[EB/OL], http://arxiv, org/ abs/math/0210185, 2002.
  • 5Chen H. Chen-Ruan orbifold eohomology of moduli space .μ0,n/S, and complex dynamic system [D]. Chengdu: Sichuan University, 2008.
  • 6Li A M, Ruan Y B. Symplectic surgery and Gromov- Witten invariants of Calabi-Yau 3-folds[J]. Invent Math, 2001, 151: 211.
  • 7Chen W, Ruan Y. Orbifold gromov-witten theory[J].Cont Math, 2002,310, 25: 86.
  • 8William F. Introduction to toric varieties[M]. Princeton: Princeton University Press, 1993.
  • 9Adem A, Leida J, Ruan Y B. Orbifolds and Stringy Topology[M]. Cambridge: Cambridge University Press, 2007.
  • 10邹洋杨.Orbifold嵌入定理[J].四川大学学报(自然科学版),2007,44(5):945-948. 被引量:1

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部