期刊文献+

电阻点焊焊接过程中电流信号时间序列混沌特征研究 被引量:2

Phase Reconstruction and Chaotic Properties Analysis of Signal Time Series of Current during Spot Welding
下载PDF
导出
摘要 以混沌理论和相空间重构理论为基础对点焊焊接过程中电流信号的时间序列进行了特征分析,分别对电流信号时间序列的最佳时间延迟τ、关联维数D、嵌入维数m及最能体现混沌特征的Lyapunov指数进行了定量化的计算,发现点焊焊接过程中电流信号在某些情况下具有混沌特征。分析了影响电流信号的因素个数,给出了混沌意义上的最大电流信号时序的预测尺度。研究结果为进一步结合统计理论改进点焊质量检测和控制系统提供了参考。 Chaotic theory and phase reconstruction were used to analyse signal time series of current during spot welding, and some indexes such as optimal delay time v, correlation dimension D, embedding dimension m, and Lyapunov exponent were obtained, and chaotic properties were verified in this series sometimes. And the number of influencing factor was discussed. At last, the largest forecasting scale on the signal series time of spot welding current was estimated. And it gives a refer ence to the research of quality detection and controlling system.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2007年第21期2596-2599,共4页 China Mechanical Engineering
基金 国家自然科学基金资助项目(50575159) 天津市应用基础研究计划项目(06YFJMJC03400) 高等学校博士学科点专项科研基金资助项目(20060056058)
关键词 点焊 混沌时间序列 关联维数 最大LYAPUNOV指数 spot welding chaotic time series correlation dimension the largest Lyapunov expo nent
  • 相关文献

参考文献8

  • 1Rinse Ikeda.Resistance Spot Weldability and Electrode Wear Characteristics of Aluminium Alloy Sheets[J].Welding in the World,1998(41):492-498.
  • 2张崧,彭光俊,史红.超声法检测金属薄板点焊接头质量研究[J].哈尔滨工业大学学报,2003,35(11):1392-1394. 被引量:20
  • 3郁俊莉,王其文,韩文秀.经济时间序列相空间重构与混沌特性判定研究[J].武汉大学学报(理学版),2004,50(1):33-37. 被引量:18
  • 4Takens F.Detecting Strange Attractors in Fluid Turbulence[M].Rand D,Toung L S,eds.Dynamical Systems and a Turbulence.New York:Springer,1981:66-86.
  • 5Packard N H,Field J D.Geometry from a Time Series[J].Physical Review Letters,1980,45(3):712-716.
  • 6Fraser A M,Swinney H L.Independent Corrdinates for Strange Attractors from Mutual Information[J].Physical Review A,1986,33:1134-1140.
  • 7Grassberger P,Procaccia I.Characterization of Strange Attractors[J].Physical Review Letters,1983,50(5):346-349.
  • 8Rosenstein M T,Collins J J,De Luca C J.A Practical Method for Calculating Largest Lyapunov Exponents in Dynamical Systems[J].Physica D,1993,65:117-143.

二级参考文献12

  • 1[1]Packard N H, Crutchfield J P, Farmer J D. Geometry from a Time Series[J]. Physical Review Letters,1980,45:712-716.
  • 2[2]Takens F. Detecting Strange Attractors in Turbulence[A]. In:Rand D,Young L S eds.Dynamical Systems and Aturbulence, Lecture Notes in Mathematics [C]. New York:Springer-Verlag,1981.336-381.
  • 3[3]Lai Y C, Lerner D. Effective Scaling Regime for Computing the Correlation Dimension from Chaotic Time Series[J]. Physica D,1998,115:1-18.
  • 4[4]Theiler J,Eubank S. Testing for Nonlinearity in Time Series: The Method of Surrogate Data[J]. Physica D,1992,58:77-94.
  • 5[5]Kugiumtzis D, Lillekjendlie B. State Space Reconstruction Parameters in the Analysis of Chaotic Time Series the Role of the Time Window Length[J]. Physica D,1996,95:13-28.
  • 6[6]Cao Liang-yue, Alistair Mees. Practical Method for Determining the Minimum Embedding Dimension of a Scalar Time Series[J].Physica D,1997,110:43-50.
  • 7[7]Abarbanel, Henry D I, Reggie B. The Analysis of Observed Chaotic Data in Physical Systems[J]. Rev Mod Phys, 1993,65(4):1331-1392.
  • 8[8]Wayland R, Bromley D, Pickett D. Recognizing Determinism in a Time Series[J].Phys Rev Lett,1993,70(5):580-582.
  • 9[9]Grassberger P, Procaccia I. Measuring the Strangeness of Strange Attractors [J]. Physica D,1983,9:189-208.
  • 10[10]Eckmann J P, Kamphorst S O, Ruelle D. Lyapunov Exponents from Time Series[J]. Phys Rev A,1986,34: 4971-4979.

共引文献35

同被引文献45

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部