期刊文献+

二面体群上Hopf路余代数的结构分类 被引量:5

Classification of Hopf Path Coalgebras over Dihedral Group
下载PDF
导出
摘要 从Hopf quiver出发,借助于右kZ_u(c)-模的直积范畴■ Mkz_(u(C))与kG-Hopf双模范畴kG/kG M kG/kG之间的同构,当G是二面体群D_3时,给出了Hopf路余代数kQ^c的同构分类及其子Hopf代数kG[kQ_1]结构. Let G be a group and kG be the group algebra over a field k. It is well known that the kG-Hopf bimodule category kG ^kGMkG^kG is equivalent, to the direct product category ∏C∈K(G) MkZu(C). This paper discusses the isomorphic classication of Hopf path coalgebras kQ^c and the structures of Hopf subalgebrass of kG[kQ1] when G is a dihedral group D3.
机构地区 南通大学理学院
出处 《数学年刊(A辑)》 CSCD 北大核心 2007年第5期709-718,共10页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10471121) 南通大学自然科学基金(No.052006)资助的项目
关键词 箭图 HOPF代数 Hopf双模 Quiver, Hopf algebra, Hopf bimodule
  • 相关文献

参考文献11

  • 1Auslander M.,Reiten I.and Smal S.O.,Representation Theory of Artin Algebras[M],Cambridge:Cambridge University Press,1995.
  • 2Cibils C.and Rosso M.,Hopf quivers[J],J.Algebra,2002,254:241-251.
  • 3Cibils C.and Rosso M.,Algebras des chemins quantiques[J],Adv.Math.,1997,125:171-199.
  • 4Majid S.,Physics for algebraists:Non-commutative and non-cocommutative Hopf algebras by a bicross product construction[J],J.Algebra,1990,130:17-64.
  • 5Reshetikhin N.Yu.and Turaev V.G.,Ribbon graphs and their invariants derived from quantum groups[J],Commun.Math.Phys.,1990,127:1-26.
  • 6Zhu X.,Finite representations of a quiver arising from string theory[EB/OL].[2005-08-01].e-print http://arxiv.org/abs/math.AG/0507316.
  • 7Robles-Llana D.and Rocek M.,Quivers,quotients and duality[EB/OL].[2005-01-01].e-print http://arxiv.org/abs/help-th/0405230.
  • 8Zhang S.,Zhang Y.and Chen H.X.,Classification of PM quivers Hopf algebras[EB/OL],[2005-01-01].http://arxiv.org/abs/math.QA/0410150.
  • 9Montgomery S.,Hopf Algebras and Their Actions on Rings[M],CBMS Reg.Conf.Series 82,Providence,RI,1993.
  • 10Sweedler M.E.,Hopf Algebras[M],Benjamin:New York Press,1969.

同被引文献32

  • 1吴美云.度为n的余半单Hopf代数的表示[J].西南师范大学学报(自然科学版),2006,31(6):1-3. 被引量:5
  • 2王艳华,叶郁.用quiver构造拟三角Hopf代数[J].数学年刊(A辑),2007,28(1):39-48. 被引量:1
  • 3Auslander M, Reiten I, SmalφS Φ. Representation Theory of Artin Algebras. Cambridge: Cambridge University Press, 1995.
  • 4Cibils C, Rosso M. Hopf quivers. J Algebra, 2002, 254:241-251.
  • 5Cibils C, Rosso M. Algebras des chemins quantiques. Adv Math, 1997, 125:171-199.
  • 6Zhang S, Zhang Y Z, Chen H X. Classification of PM Quivers Hopf Algebras. Singapore: World Scientific, 2008.
  • 7Montgomery S. Hopf Algebras and Their Actions on Rings. Providence RI: CBMS Reg Conf Series 82, 1993.
  • 8Sweedler M E. Hopf Algebras. New York: Benjamin, 1969.
  • 9Woronowicz S L. Differential calculus on compactmatrix pseudogroups (quantum groups). Commun Math Phys, 1989, 122:125-170.
  • 10Nichols W. Bialgebras of type one. Commun Alg, 1978,6:1521-1552.

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部