摘要
从Hopf quiver出发,借助于右kZ_u(c)-模的直积范畴■ Mkz_(u(C))与kG-Hopf双模范畴kG/kG M kG/kG之间的同构,当G是二面体群D_3时,给出了Hopf路余代数kQ^c的同构分类及其子Hopf代数kG[kQ_1]结构.
Let G be a group and kG be the group algebra over a field k. It is well known that the kG-Hopf bimodule category kG ^kGMkG^kG is equivalent, to the direct product category ∏C∈K(G) MkZu(C). This paper discusses the isomorphic classication of Hopf path coalgebras kQ^c and the structures of Hopf subalgebrass of kG[kQ1] when G is a dihedral group D3.
出处
《数学年刊(A辑)》
CSCD
北大核心
2007年第5期709-718,共10页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.10471121)
南通大学自然科学基金(No.052006)资助的项目