期刊文献+

CLIGEN非降水参数在黄土高原的适应性评估 被引量:4

Assessment of CLIGEN non-precipitation parameters on the Loess Plateau
下载PDF
导出
摘要 天气生成器(CLIGEN)可以产生以日为时间单元的天气数据,从而广泛应用于土壤侵蚀和作物生长模拟模型,其模拟结果的优劣直接影响这些模型的输出结果。利用散布黄土高原的12个标准气象站点长时间序列的气候数据评估CLIGEN模拟非降水参数(温度、太阳辐射、风速)的能力。结果表明:CLIGEN能较好的模拟日最高温度;对日最低温度与露点温度的模拟次之;模型对太阳辐射和风速的模拟较差,特别是对风速的模拟,模拟值要显著的高于实测值。CLIGEN模拟的温度日较差、第1天最高温度与第2天最低温度之差、第2天最高温度与第1天最低温度之差的均值和标准差普遍偏高,但均值的误差较小,而标准差被过高模拟;模型在产生气候数据时,没有保持逐日渐变性和连续性。CLIGEN能够较好的模拟最高温度与最低温度的季节连续性与相关性;而过高的模拟了太阳辐射的季节相关性以及温度与太阳辐射的季节互相关性;同时,模型没有模拟出各气象要素自身及其之间的逐日相关性。 Soil erosion models and crop growth simulation models are often used to assess the potential impact of climate variations. Most simulation models require daily weather data, which are frequently synthesized using stochastic daily weather generators. The objective of this study was to evaluate the ability of the CLimate GENerator (CLIGEN) to generate non-precipitation parameters, including daily temperatures, solar radiation, and wind velocity at twelve standard meteorological stations on the Loess Plateau. The results demonstrated that the CLIGEN model reproduced daily maximum temperature reasonably well. In comparison, daily minimum and dew point temperature were less well reproduced, probably because of the range check imposed in the model and used the standard deviation of minimum temperature to compute dew point. Daily solar radiation and wind velocity were less well generated than temperature; especially for wind velocity the generated data were significantly greater than the measured data. Both means and standard deviations of the same day temperature range and one day lag temperature ranges of the CLIGEN-generated data were consistently greater than those of the measured data on all sites. But the means were better reproduced than the standard deviations. Temperature tends to change in a gradual and continuous manner, but CLIGEN generated data did not reproduced this trend. Seasonal serial correlations of maximum and minimum temperatures were well reproduced, but those of solar radiation and cross correlation between temperature and solar radiation were poorly reproduced by the CLIGEN model. There were no day to day correlations for the CLIGEN-generated data, including solar radiation, maximum and minimum temperature.
出处 《中国水土保持科学》 CSCD 2007年第5期21-31,共11页 Science of Soil and Water Conservation
基金 国家自然科学基金国际合作与交流项目"黄土高原水资源 土壤侵蚀和作物生产对未来全球气候变化的潜在响应"(40640420061) 中国科学院海外杰出学者基金项目"黄土高原水资源 土壤侵蚀和作物生产对未来全球气候变化的潜在响应"(2005-2-3)
关键词 天气生成器 非降水参数 适应性评估 黄土高原 CLIGEN non-precipitation parameter assessment Loess Plateau
  • 相关文献

参考文献12

  • 1[1]Richardson C W,Wright D A.WGEN:A model for generating daily weather variables.Washington D C:USDA-ARS Publ.ARS-8,1984
  • 2[2]Hanson C L,Cumming K A,Woolhiser D A,et al.Microcomputer program for daily weather simulations in the contiguous United States.Washington D C:USDA-ARS Publ.ARS-114,1994
  • 3[3]Nicks A D,Lane L J,Gander G A.Weather generator,Ch.2.Washington D C:USDA-ARS-NSERL,1995
  • 4[4]Baffault C,Nearing M A,Nicks A D.Impact of CLIGEN parameters on WEPP-predicted average annual soil loss.Transactions of the ASAE,1996,39(2):447-457
  • 5[5]Zhang X C.Assessing seasonal climatic impact on water resources and crop production using CLIGEN and WEPP models.Transactions of the ASAE,2003,46(3):685-693
  • 6[6]Zhang X C,Liu W Z.Simulating potential response of hydrology,soil erosion,and crop productivity to climate change in Changwu tableland region on the Loess Plateau of China.Agricultural and Forest Meteorology,2005,131(3/4):127-142
  • 7[7]Johnson G L,Hanson C L,Hardegree S P,et al.Stochastic weather simulation:overview and analysis of two commonly used models.Applied Meteorology,1996,35(10):1878-1896
  • 8[8]Zhang X C.CLIGEN non-precipitation parameters and their impact on WEPP crop simulation.Applied Engineering in Agriculture,2004,20(4):447454
  • 9缪驰远,何丙辉,陈晓燕,吴咏.WEPP模型中的CLIGEN与BPCDG应用对比研究[J].中国农学通报,2004,20(6):321-324. 被引量:12
  • 10张光,辉.CLIGEN天气发生器在黄河流域的适应性研究[J].水土保持学报,2004,18(1):175-178. 被引量:20

二级参考文献30

  • 1倪九派,谢春燕,魏朝富,谢德体.土壤侵蚀预测建模研究进展[J].中国水土保持科学,2005,3(1):66-71. 被引量:10
  • 2[11]Zhang X C.Generating Correlative storm variables for CLIGEN using a distribution-free approach.Transactions of the ASAE,2005,48(2):567-575
  • 3[12]Zhang X C,Nearing M A,Garbrecht J D,et al.Downscaling monthly forecasts to simulate impacts of Climate Change on soil Erosion and Wheat Production.Soil Science Society of America Journal,2004(68):1376-1385
  • 4[16]中国科学院水利部西北水土保持研究所.黄土丘陵区水土保持型生态农业研究.陕西杨凌:天则出版社,1990:36-56
  • 5[17]Williams J R,Jones C A,Dyke P T.A modeling approach to determining the relationship between erosion and soil productivity.Transactions of the ASAE,1984,27(1):129-144
  • 6[18]Williams J R,Nicks A D,Arnold J G.Simulator for water resources in rural basins.ASCE Hydraulics Journal,1985,111(6):970--986
  • 7[19]William J R.The EPIC model.Temple:USDA-ARS,grassland,soil and water research laboratory,1997
  • 8[1]Nicks A D,Lane L J,Grander G A.The Water Erosion Prediction Project (WEPP) Model // Landscape Erosion and Evolution Modeling.New York:Kluwer Academic/Plenum Publishers,2001:145-199
  • 9[2]Yu B.Using CLIGEN to generate RUSLE Climate inputs.Transaction of the ASAE,2002,45(4):993-1 001
  • 10[3]Fox F A,Flanagan D C,Wagner L E,et al.WEPS and WEPP science commonality project // Flanagan D C.Soil Erosion Research for the 21th Century symposium & 2nd International Symposium on Preferential Flow.Honolulu,Hawaii,USA:ASAE Publication,2001:376-379

共引文献32

同被引文献57

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部