期刊文献+

Sobolev方程的全离散混合有限元法 被引量:2

Fully-discrete Mixed Finite Element Method for Sobolev Equation
下载PDF
导出
摘要 对Sobolev方程采用混合有限元法求解,给出相应的全离散格式及其误差估计,与已有文献中的有限元方法相比,该方法所采用的变分形式较简单,计算量较小,精度较高。 By introducing the mixed finite element method for Sobolev equation, the corresponding fully-discrete formulation is presented and the error estimates are obtained. Compared to the other finite element methods, this method takes simpler variational formulation, costs less computation and has higher accuracy.
出处 《四川理工学院学报(自然科学版)》 CAS 2007年第5期63-66,共4页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金 四川省教育厅基金资助项目(2006C082)
关键词 混合有限元法 SOBOLEV方程 全离散 误差估计 mixed finite element Sobolev equation fully-discrete error estimates
  • 相关文献

参考文献4

  • 1赵培忻,陈焕祯.Sobolev方程的特征混合有限元方法[J].应用数学,2003,16(4):50-59. 被引量:7
  • 2Mitswhiro T Nakao.Error Estimates of a Galerkin Method for some Nonlinear Sobolev Equations in one space Dimension[J].Numer Math,1985,(47):139-157.
  • 3Jiang Ziwen,Chen Huanzhen.Error Estimates for Mixed Finite Element Methods for Sobolev Equation[J].Northeast Math J,2001,17(3):301-314.
  • 4Haiming Gu,Danping Yang.Least-squares Mixed Finite Element Method for Sobolev Equations[J].India J appl Math,2000,31(5),505-517.

二级参考文献9

  • 1P L Davis. Aquasilinear parabolic and a related third order problem[J]. J Math Anal Appl , 1970,49:327-335.
  • 2R E Ewing. A coupled non-linear hyperbolic Sobolev system [J]. Ann Mat Pura AppL , 1997,114 (IV)331-349.
  • 3Ziwen Jiang, Huanzhen Chen. Error estimates for mixed finite element methods for Soblev equation[J]. Northeast Math ,2001,7(3) :301-324.
  • 4M R Todd, P M O'dell, G J Hirasaki. Methods for increased accuracy in numerical reservior simulators [J]. Soc Petrol Engrg J, 1972,12: 515 -530.
  • 5J Douglas,Jr T Dupont. Galerkin methods for parabloic equations[J]. SIAM J Numer Anal , 1970,7:575-626.
  • 6G Chavent,J Jaffre. Mathematical methods and finite elements for reservior simulation[M]. New York:Elsevier Science publishers, 1986.
  • 7J Douglas,Jr T F Russell Numerical methods for cinvection-dominated diffusion problems based on combining the method of characteristics with finite element of finite difference procedures[J]. SIAM J Numer Anal ,1982,19:871-885.
  • 8M A Celia,T F Russell, I Herrera,R E Ewing. An Eulerian-Lagrangian localized adjoint method for the advecfion-diffusion equation[J]. Adv Water Resources, 1990,13 :187 - 206.
  • 9J Douglas,Jr J E Roberts. Global estimates for mixed methods for second order elliptic equation[J]. Math Comp ,1985,44,39-52.

共引文献6

同被引文献17

  • 1LI,Hong(李宏),LIU,Ru-xun(刘儒勋).THE SPACE-TIME FINITE ELEMENT METHOD FOR PARABOLIC PROBLEMS[J].Applied Mathematics and Mechanics(English Edition),2001,22(6):687-700. 被引量:5
  • 2李宏,郭彦.Sobolev方程的特征线混合有限元法[J].内蒙古工业大学学报(自然科学版),2006,25(1):1-4. 被引量:2
  • 3郭玲,陈焕贞.Sobolev方程的H^1-Galerkin混合有限元方法[J].系统科学与数学,2006,26(3):301-314. 被引量:54
  • 4Barenblett G I,Zheltov I P,Kochian I N. Basic concepts in the theory of homogeneous liquids in fissured rocks[J].Journal of Applied Mathematics and Mechanics,1990,(05):1286-1303.
  • 5Ting T W. A cooling process according to two-temperature theory of heat conduction[J].Journal of Mathematical Analysis and Applications,1974,(01):23-31.
  • 6Li Q,Wei H. Two order superconvergence of finite element methods for Sobolev equations[J].Journal of Applied Mathematics and Computing,2001,(03):497-505.
  • 7Adams R A. Sobolev Spaces[M].New York:Academic Press,Inc,1975.
  • 8罗振东.混合有限元法基础及其应用[M]北京:科学出版社,2006.
  • 9Brezzi F,Fortin M. Mixed and Hybrid Finite Element Methods[M].New York:springer-verlag,1991.
  • 10Ciarlet P G. The Finite Element Method for Elliptic Problems[M].New York:North-Holland,Amsterdam,1978.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部