摘要
对具有Q-逆断面的正则半群S的基于子半群I,L为构件的结构,引入了I,L上的同余的相容条件及用I和L上同余作成的同余对的概念,给出了S上的相应的同余刻划.用给出同余刻划方法描述了逆半群同余、群同余和幂等分离同余.
The paper studied regular semigroups with Q-inverse transversals on the basis of the structure related to the build bricks I and L. We obtained the so-called congruence pair based on Saito's structure theorem, so that it produces a congruence on S abstractly. We also described the inverse semigroup congruence and the group congruence and the idempotent-separating congruence on S.
出处
《兰州大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第5期84-87,共4页
Journal of Lanzhou University(Natural Sciences)
基金
国家自然科学基金(10571061).
关键词
具有Q-逆断面的正则半群
同余
同余对
regular semigroup with Q-inverse transversals
congruence
congruence pair