期刊文献+

一个新的Hamiltonian振幅方程的周期波解 被引量:1

Periodic wave solutions for a new Hamiltonian amplitude equation
下载PDF
导出
摘要 由扩展的F-展开法获得了一个新的Hamiltonian振幅方程的新形式的周期波解.在极限情形得到了由双曲函数和三角函数表示的解.作为特别情形,得到了非线性Schrǒdinger方程的相应解. The new form periodic wave solutions for a new Hamiltonian amplitude equation are obtained by the extended F-expansion method. We can simultaneously obtain many periodic wave solutions expressed by various Jacobi elliptic functions for the new Hamiltonian amplitude equation introduced by M. Wadati et al. In the limit case, the hyperbolic function solutions and trigonometric function solutions are given, respectively. Especially, when the parameter ε goes to zero, the new Hamiltonian amplitude equation becomes the well-known nonlinear Schr6dinger (NLS) equation, whose solutions can be derived from the solutions of the new Hamiltonian amplitude equation.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第5期111-116,共6页 Journal of Lanzhou University(Natural Sciences)
基金 Supported by Natural Science Foundation of Gansu Province of China (3ZS041-A25-011).
关键词 新的Hamiltonian振幅方程 F-展式法 周期波解 JACOBI椭圆函数 孤立波 new Hamiltonian amplitude equation F-expansion method periodic wave solution Jacobi elliptic function solitary wave solution
  • 相关文献

参考文献11

  • 1GU Chao-hao,LI Yi-shen,GUO Bo-ling,et al.Soliton and its application[M].Hangzhou:Zhejiang Publishing House of Science and Technology,1990.
  • 2WANG Ming-liang,LI Zhi-bin,ZHOU Yu-bin.Homogeneous balance principle and its application[J].Journal of Lanzhou University (Natural Sciences),1999,35(3):8-16.
  • 3LIU S K,FU Z T,LIU S D,et al.Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations[J].Phys Lett A,2001,289(1-2):69-74.
  • 4FU Z T,LIU S K,LIU S D,et al.New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations[J].Phys Lett A,2001,290(1-2):72-76.
  • 5YAN Z Y.Abundant families of Jacobi elliptic function solutions of the (2+1)-dimensional integrable Davey-Stewartson-type equation via a new method[J].Chaos Solitons & Fractals,2003,18(2):299-309.
  • 6LIU S K,FU Z T,LIU S D.Periodic solutions for a class of coupled nonlinear partial differential equations[J].Phys Lett A,2005,336(2-3):175-179.
  • 7ZHOU Y B,WANG M L,WANG Y M.Periodic wave solutions to a coupled KdV equations with variable coefficients[J].Phys Lett A,2003,308(1):31-36.
  • 8ZHOU Y B,WANG M L,MIAO T D.The periodic wave solutions and solitary wave solutions for a class of nonlinear partial differential equations[J].Phys Lett A,2004,323(1-2):77-78.
  • 9WANG M L,ZHOU Y B.The periodic wave solutions for the Klein-Gordon-Schr(o)dinger equations[J].Phys Lett A,2003,318(1-2):84-92.
  • 10WADATI M,SEGUR H,ABLOWITZ M J.A new Hamiltonian amplitude equation governing modulated wave instabilities[J].Phy Soc Jpn,1992,61(4):1 187-1 193.

同被引文献19

  • 1王明亮,周宇斌.一个非线性波动方程的精确解[J].兰州大学学报(自然科学版),1996,32(1):1-5. 被引量:14
  • 2WANG Ming-liang. Solitary wave solutions for variant Boussinesq equations[J]. Phys Lett A, 1995, 199(3-4): 169-172.
  • 3WANG Ming-liang. Exact solutions for a com-pound KdV-Burgers equation[J]. Phys Lett A, 1996, 213(5-6): 279-287.
  • 4WANG Ming-liang, ZHOU Yu-bin, LI Zhi-bin. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics[J]. Phys Lett A, 1996, 216(1-5): 67-75.
  • 5LIU Shi-kuo, Fu Zun-tao, LIu Shi-da. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equation[J]. Phys Lett A, 2001: 289(1-2): 69-74.
  • 6ZHOU Yu-bin, WANG Ming-liang, WANG Yue-ming. Periodic wave solutions to a couple KdV equations with variable coefficients[J]. Phys Lett A, 2003, 308(1): 31-36.
  • 7ZHOU Yu-bin, WANG Ming-liang, MIAO Tian-de. The periodic wave solutions and solitary wave solutions for a class of nonlinear differential equation[J]. Phys Lett A, 2004, 323(1-2): 77-78.
  • 8Sirendaorer. A new auxiliary equation and exact travelling wave solutions of nonlinear equations[J]. Phys Lett A, 2006, 356(2):124-130.
  • 9KUMAR R, KAUSHAL R S, PRASAD A. Some new solitary and travelling wave solutions of certain nonlinear diffusion-reaction equations using auxiliary equation method[J]. Phys Lett A, 2008, 372(19): 3 395-3 399.
  • 10MA Yu-lan, LI Bang-qing, WANG Cong. A series of abundant exact travelling wave solutions for a mod- ified generalized Vakhnenko equation using auxiliary equation method[J]. Appl Math Comput, 2009, 211(1): 102-107.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部