期刊文献+

三角连通(K_(1,4);2)-图的完全圈可扩性

Fully Circle Extendability of Triangularly Connected (K_(1,4);2)-Graphs
下载PDF
导出
摘要 对于任意一对边e1,e2∈E(G),在G中存在一系列3-圈C1,C2…,Cl使得e1∈C1,e2∈Cl且E(Ci)∩E(Ci+1)≠Φ(1≤i≤l-1),则称图G为三角连通的.本文证明如下结论:顶点数不小于3,无孤立点,爪心独立的三角连通(K1,4;2)-图是完全圈可扩的. A graph G is triangularly connected if for every pair of edges e1, e2 ∈ E (G), G has a sequence of 3-cycles C1, C2,…, Ct, which meet the condition of e1 ∈ C1, e2 ∈ Cl and E(Ci) ∩ E ( Ci + 1 ) ≠ Ф ( 1 ≤ i ≤ l - 1 ). This paper proves that every triangularly connected ( K1,4 ; 2)-graph with independent claw centers and at least three vertices and without any isolated vertex is full circle and extendable.
作者 沈雷 王江鲁
出处 《山东科学》 CAS 2007年第5期10-12,共3页 Shandong Science
关键词 (K1 4 2)-图 三角连通 完全圈可扩 (K1,4 2)-graphs triangularly connected full circle extendable graph
  • 相关文献

参考文献4

  • 1BONDY J A,MURTY U S R.Graph Theory with Applications[M].New York:Macmillan London and Elsevier,1976.
  • 2HENDRY G R T.Extending Cycles in Graph[J].Discrete Math,1990,85:59-72.
  • 3ZHAN M Q.Vertex Pancyclicity in Quasi Claw Free Qraphs[J].Discrete Mathematics,2007,307(13):1679-1683.
  • 4曲晓英,赵海红.三角连通半无爪图的点泛圈性[J].西南师范大学学报(自然科学版),2006,31(2):26-29. 被引量:3

二级参考文献6

  • 1Bondy J A,Murty U S R.Graph Theory with Applications[M].New York:Macmillan London and Elsevier,1976:55-73.
  • 2Oberly D,Sumner D.Every Connected,Locally Connected Nontrivial Graph with no Induced Claw is Hamiltonian[J].J Graph Theory,1979,3:351-356.
  • 3Clark L.Hamiltonian Properties of Connected locally Connected Graphs[J].Congr Numer,1981,32:199-204.
  • 4Hendry G R T.Extending Cycles in Graphs[J].Discrete Math,1990,85:59-72.
  • 5Ainouche A.Quasi-Claw-Free Graphs[J].Discrete Math,1998,179:13 -26.
  • 6Lai Hongjian,Miao Lianying,Shao Yehong,Wan Liangxia.Triangularly Connected Claw-Free Graph[J].Preprint,2004.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部