摘要
在Torres-Vega和Frederick量子相空间表象框架下,获得了用于模拟Bose-Einstein凝聚态的吸引性非线性Schrdinger方程的严格解.所得到的本征函数可通过"类Fourier"投影变换分别投影到位移空间和动量空间中去,从而得到相应空间中的本征函数.作为例子,探讨了一类带有双曲函数的本征解的性质.
Within the framework of the quantum phase-space representation established by Torres-Vega and
Frederick, the rigorous solutions of attractive nonlinear Schrǒdinger equation are solved, which models the Bose-Einstein condensate. The eigenfunctions in position and momentum spaces can be obtained through the “Fourier-like” projection transformation from the phase-space eigenfunctions. The eigenfunction with a hypersecant part is discussed as an example.
出处
《原子与分子物理学报》
CAS
CSCD
北大核心
2007年第5期1093-1098,共6页
Journal of Atomic and Molecular Physics
基金
国家自然科学基金(20273008)
北京市优秀人才培养资助(20051D0502209)