期刊文献+

基于SA-PSO的电力系统无功优化 被引量:6

Power System Reactive Power Optimization Based on Simulated Annealing Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 粒子群优化算法是一种简便易行,收敛快速的演化计算方法。但该算法也存在收敛精度不高,易陷入局部极值的缺点。针对这些缺点,对原算法加以改进,引入了自适应的惯性系数和模拟退火算法的思想,提出了一种新的模拟退火粒子群优化(simulated annealing particle swarm optimization,SA-PSO)算法,并将其应用于电力系统无功优化。对IEEE14节点系统进行了仿真计算,并与PSO算法作了比较,结果表明SA-PSO算法全局收敛性能及收敛精度均较PSO算法有了较大提高。 Particle swarm optimization (PSO) is one af the evolutionary computation techniques which is convenient and has high convergence speed,but it also has some limitations such as premature convergence. So an improved method called simulated annealing particle swarm optimization (SA-PSO)algorithm is presented and is applied to reactive power optimization 0f power system,which takes advantage of the selfadaptation inertia weight coefficient and the idea of simulated annealing algorithm. The proposed method has significant improvement in global convergence property and convergence precision compared with PSO algorithm,which is proved by the simulation results of IEEE 14-node system.
出处 《电力系统及其自动化学报》 CSCD 北大核心 2007年第5期114-118,共5页 Proceedings of the CSU-EPSA
关键词 电力系统 无功优化 模拟退火粒子群优化算法 自适应 power system reactive power optimization simulated annealing particle swarm optimization algorithm (SA-PSO) self-adaptation
  • 相关文献

参考文献10

二级参考文献16

  • 1马晋弢,杨以涵.遗传算法在电力系统无功优化中的应用[J].中国电机工程学报,1995,15(5):347-353. 被引量:144
  • 2[1]KENNEDY J,EBERHART R. Particle swarm optimization [A]. IEEE Int'l Conf. on Neural Networks[C]. Perth,Australia:IEEE, 1995. 1942-1948.
  • 3[2]EBERHART R,KENNEDY J. A new optimizer using particle swarm theory [A]. Proc. of the sixth international Symposium on Micro Machine and Human Science[C]. Nagoya, Japan: [ s.n. ], 1995.39- 43.
  • 4[3]SHI Yu-hui,EBERHART R. Parameter selection in particle swarm optimization[A]. Proc. of the 7th Annual Conf. on Evolutionary Programming[C]. Washington DC: [s.n.], 1998. 591-600.
  • 5[5]SHI Y,EBERHART R. A modified particle swarm optimizer[A]. IEEE World Congress on Computational Intelligence[C]. [s.1.]: IEEE, 1998.1951-1957.
  • 6[6]CLERC M,KENNEDY J. The particle swarm-explosion,stability,and convergence in a multidimensional complex space[J]. IEEE Trans. on Evolutionary Computation,2002,6(1) :58-73.
  • 7[8]YOSHIDA H,KAWATA K,FUKUYAMA Y. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. IEEE Trans.on Power Systems,2000,15(4): 1232-1239.
  • 8张伯明,高等电力网络分析,1994年
  • 9方述诚,线性优化及扩展.理论与算法,1994年
  • 10陈国良,遗传算法及其应用,1996年

共引文献314

同被引文献83

引证文献6

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部