期刊文献+

基于分类和曲线拟合的干涉超光谱图像压缩 被引量:5

Interference Hyper-Spectral Images Compression Based on Classification and Curve-Fitting
原文传递
导出
摘要 根据干涉超光谱图像的特点,提出了一种基于图像分类与曲线拟合的干涉超光谱图像数据分解算法,结合内嵌比特平面编码技术实现干涉超光谱图像的压缩。与JPEG2000一样,该算法实现了有损、无损压缩的兼容。将干涉超光谱图像数据分为主干涉区域与非主干涉区域两类,针对主干涉区域提出了一种相似匹配算法,而对非主干涉区域采用经验模式分解和二次曲线拟合方法进行数据分析,两种分析算法结合起来能够有效地对谱线数据进行分解,从而有利于取得更好的压缩效果。仿真结果表明,提出的算法可以使无损压缩的输出码率降低0.2-0.4bit/pixel,而近无损、限失真压缩的重建图像质量相应提高。 A data decomposition algorithm for interference hyper-spectral images based on classification and curvefitting is proposed, by studying features of hyper-spectral images. Compression of interference hyper-spectral images is realized by combining the embedded bit-plane coding technology, which implements loss and lossless compression in the same algorithm just as in JPEG2000. The data of a spectral line are decomposed into two classes, main- interference class and non-main-interference class. And a similarity-based match method is presented for the data of main-interference class, while the data of non-main-interference class is processed by empirical mode decomposition and second-order curve-fitting algorithm. The data of a spectral line can be approached appropriately by combining the two analytical algorithms, which benefits lossless image compression. The simulation results show that the output rate is decreased by 0.2 - 0.4 bit per pixel for lossless compression, and the reconstructed image quality is also improved.
出处 《光学学报》 EI CAS CSCD 北大核心 2007年第1期45-51,共7页 Acta Optica Sinica
基金 海南省自然科学基金(80551) 海南省教育厅科研资助项目(Hjkj200602)资助课题
关键词 图像处理 图像压缩 经验模式分解 二次曲线拟合 相似匹配 image processing image compression empirical mode decomposition second-order curve-fitting similarity-based match
  • 相关文献

参考文献13

  • 1吴小华,李自田,张帆.干涉超光谱图像分析与近无损压缩CPLD实现[J].光子学报,2005,34(9):1346-1350. 被引量:17
  • 2Xiaolin Wu. An algorithmic study on lossless image compression[C].Proceedings of the 1996 Data Compression Conference, Snowbird, Utah, April 1996. 150-159
  • 3S. W. Golomb. Run length encodings. IEEE Trans. Information Theory, 1966, 12(3): 399-401
  • 4M. J. Weinberger, G. Seroussi, G. Sapiro. LOCO-I.. A low complexity, context based, lossless image compression algorithm [C].Proceedings Data Compression Conference, Snowbird, Utah, April 1996. 140-149
  • 5N. Ranganathan. S. O. Romaniuk, K. R. Namuduri. A lossless image compression algorithm using variable block size segmentation[J]. IEEE Trans. Image Processing, 1995, 4(10) : 1396-1406
  • 6Shantanu D. Rane, Guillermo Sapiro. Evaluation of JPEG-LS, the new lossless and controlled-Lossy still image compression standard, for compression of high resolution elevation data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39 (10) : 2298-2306
  • 7D. Taubman. High performance scalable image compression with EBCOT[J]. IEEE Transactions on Image Processing, 2000, 9 (7) : 1151-1170
  • 8D. Taubman, E. Ordentlich, M. Weinberger et al.. Embedded block coding in JPEG 2000 [J]. Signal Processing Image Communication, 2001, 17(1) : 49-72
  • 9C. Christopoulos, J. Askelof, M. Larsson. Efficient methods for encoding regions of interest in the upcoming JPEG2000 still image coding standard[J]. IEEE Signal Processing Letters, 2000, 7(9): 247-249
  • 10M. D. Adams, R. Ward. Wavelet Transforms in the JPEG-2000 Standard. Proc. IEEE Pacific Rim Conference, Victoria, BC, Canada, Aug. 2001. 160-163

二级参考文献12

  • 1吴乐南.数据压缩[M].北京:电子工业出版社,2003,9..
  • 2侯伯亨 顾新.VHDL硬件描述语言与数字逻辑电路设计.修订版[M].西安:西安电子科技大学出版社,2001.9..
  • 3Mailjes C, Vermande P, Castanie F. Spectal image compression. J Optics (Paris), 1990,21 (3): 121132.
  • 4Shapiro J M.Embedded image coding using zerotrees of wavelet coefficients[J],1993(12).
  • 5Antonini M;Barlaud M;Mathieu P;Daubechies I.Image coding using wavelet transform[J],1992(02).
  • 6Mailhe C;Vermande P;Castanie F.Spectral image compression[J],1990(03).
  • 7Mallat S.A theory for multiresolution signal decomposition,1989(07).
  • 8Said A;Pearlman W A.A new fast, and efficient image codec based on set partitioning in hierarchical trees,1996(03).
  • 9相里斌,赵葆常,薛鸣球.空间调制干涉成像光谱技术[J].光学学报,1998,18(1):18-22. 被引量:86
  • 10刘良云,袁艳,相里斌,李英才.高通量层析成像光谱仪的仿真研究[J].光学学报,2001,21(2):198-201. 被引量:4

共引文献56

同被引文献45

  • 1包春江,刘向东,杨志伊.铁谱图像的彩色纹理特征提取与识别[J].润滑与密封,2007,32(4):17-19. 被引量:5
  • 2吴凤和,张晓峰.基于参数域映射及B样条插值的三维重构方法[J].中国激光,2007,34(7):977-982. 被引量:8
  • 3P L. Dragotti, G. Poggi, ARP Ragozini. Compression of multispectral images by three-dimensional SPIHT algorithm[J]. IEEE Transactions on Geosciences and Remote Sensing, 2000, 1(38) : 416-428
  • 4Ma Jing, Wu Chengke, Chen Dong et al.. Optical design and data processing of LASIS[J]. IEICE Technical Report SANE, 2006, 279-283
  • 5Ma Jing, Li Yunsong, Chen Dong. A new compression and errorcorrection scheme for interference spectral images in deep space communication[J].(Taina Communications, 2006, 3(6): 57-62
  • 6W. Sweldens. The lifting scheme: a custom-design construction of biorthogonal wavelets[J].Appl. Comput. Harmon. Anal. , 1996, 3(2): 186-200
  • 7W. Sweldens. The lifting scheme: a construction of second generation wavelets[J]. SIAM J. Math. Anal. , 1997, 29(2):511-546
  • 8JPEG2000 Part-1 Standard, ISO/IEC 15444-1
  • 9Omer N. Gerek, A. Enis Cetin. A 2D orientation-adaptive prediction filter in lifting structures for image coding[J].IEEE Trans. On Image Processing, 2006, 15(1): 106-111
  • 10Ding Wenpeng, Wu Feng, Li Shipeng. Lifting-based wavelet transform with direetionally spatial prediction[J]. Picture Coding Symposium, 2004, 483--88

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部