期刊文献+

基于高斯函数假设的图像频谱恢复特性分析方法 被引量:2

A Method for Image Spectrum Restoration Property Analysis Based on Gaussian Function
原文传递
导出
摘要 为了对图像复原算法频谱恢复特性进行分析和评价,提出了一种基于高斯函数假设的分析新方法。该方法假设光学传递函数H和退化图像频谱函数G为高斯函数,采用方差以及提出的方差比作为频谱宽度指标,对图像复原算法的频谱恢复特性进行定量分析和评价。分析中对H和G曲线设定两组方差,分无噪声和有噪声两种情况,计算出约束最小平方滤波法(CLS)和最大似然法(PML)等图像复原算法复原的图像频谱曲线及其方差和方差比,采用计算结果对复原算法进行定量的分析和评价,获得良好的效果。分析指出,最大似然法的频谱外推能力和噪声抑制特性均明显好于约束最小平方滤波法。对两种算法的分析评价实验表明,高斯函数假设分析方法是一种简便有效的图像频谱恢复特性分析方法。 In order to analyze and evaluate the spectrum restoration property of image restoration algorithms, a new method based on Gaussian function is proposed. The optical transfer function H and degraded image spectrum function G are assumed as Gaussian functions, and the variance and variance ratio are used as indexes of the spectrum width to analyze and evaluate the spectrum restoration property of the image restoration algorithms quantificationally. The curves of H and G are enacted in two groups of different variances, and the variance and variance ratio of the image spectrum F restored by constrained least squares restoration (CLS) and maximum likelihood estimation (PML) are calculated in no-noise and with-noise cases in analysis. The two algorithms are analyzed and evaluated by the calculation results, and the analysis proves that PML is better than CLS in spectrum extrapolation and noise restraint. The experimental results show that the method is easy and effective.
出处 《光学学报》 EI CAS CSCD 北大核心 2007年第3期424-429,共6页 Acta Optica Sinica
基金 国家自然科学基金(60563003) 广西科学基础研究专项项目(桂科基0575017)资助课题。
关键词 图像处理 图像复原算法 分析方法 频谱恢复特性 高斯函数 方差比 image processing image restoration algorithm analysis method spectrum restoration property Gaussian function variance ratio
  • 相关文献

参考文献9

  • 1章毓晋.图像处理与分析(图像工程,上册)[M].北京:清华大学出版社,1999.181.
  • 2D. C. Youla,H. Webb. Image restoration by the method of convex projections:Part 1-theory[J].IEEE Transaction Medical Imaging,1982,MI-l(2):81-94
  • 3L. B. Lucy. An iterative technique for the rectification of observed distributions[J].The Astronomical Journal,1974,79(6):745-765
  • 4R. C. Kenneth.数字图像处理(英文版)[M].北京:清华大学出版社,2002,159,173
  • 5钟山,沈振康.高斯扩散特性图象的盲解卷积[J].计算机工程与科学,2004,26(4):42-44. 被引量:5
  • 6赵新,余斌,李敏,卢桂章,刘景泰.基于系统辨识的显微镜点扩散参数提取方法及应用[J].计算机学报,2004,27(1):140-144. 被引量:11
  • 7陈朝阳,张桂林,张天序.图象模糊点扩散函数的求解[J].中国图象图形学报(A辑),1999,4(2):120-123. 被引量:2
  • 8刘光祖.概率论与应用数理统计[M].北京:高等教育出版社,2001年7月.
  • 9麦伟麟.光学传递函数及其数理统计[M].北京:国防工业出版社,1979.

二级参考文献10

  • 1[1]R G Lane,R H T Bates. Automatic Multidimensional Deconvolution[J]. Journal of the Optical Society, 1987, 4(1):180-188.
  • 2[2]L Rudin, S Osher, E Fatemi. Nonlinear Total Variation Based Noise RemovalAlgorithms[J]. Physica D, 1992, 60(2):259-268.
  • 3[3]F C Jeng, J W Woods. Compound Gauss-Markov Models for Image Processing[A]. A K Katsaggelos ed. Digital Image Restoration[M]. Berlin:Springer-Verlag, 1991.
  • 4[4]G H Golub, C F van Loan. An Analysis of the Total Least Squares Problem[J]. SIAM Journal Numerical Analysis, 1980,17(6):883-893.
  • 5[5]V Z Mesarovic, N P Galatsanos, A K Katsaggelos. Regularized Constrained Total Least Squares Image Restoration[J]. IEEE Trans Image Processing,1995,4(8):1096-1108.
  • 6Born M. , Wolf E.. Principles of Optics. London: Pergamon,1965
  • 7Castlenon K. R.. Digital Image Processing. New Jersey: Prentice Hall, 1996
  • 8Jiang Wei. System Identification Technology. Beijing:Chemistry Press, 1986(in Chinese)(姜伟.系统辨识技术.北京:化学工业出版社,1986)
  • 9Chen Chuan-Zhang. Mathematics Analysis. Beijing: Higher Education Publishing House, 1983(in Chinese)(陈传璋.数学分析.北京:高教出版社,1983)
  • 10李敏,赵新,卢桂章,刘景泰,张蕾.微操作机器人系统拟实环境的实现[J].机器人,2001,23(4):305-310. 被引量:4

共引文献20

同被引文献31

  • 1吴波,张良培,李平湘.基于支撑向量回归的高光谱混合像元非线性分解[J].遥感学报,2006,10(3):312-318. 被引量:29
  • 2丛浩,张良培,李平湘.一种端元可变的混合像元分解方法[J].中国图象图形学报,2006,11(8):1092-1096. 被引量:24
  • 3吴波,周小成,赵银娣.端元光谱变化与混合像元分解精度的关系研究[J].遥感信息,2007,29(3):3-7. 被引量:8
  • 4Xiaokun Wang,Lihui Wang, Longhai Yin et al.. Measurement of large aspheric surfaces by annular subaperture stitching interferometry [J]. Chin. Opt. Lett., 2007,5(11): 645-648.
  • 5R. G. Bingham, D. D. Walker et al.. A novel automated process for aspheric surfaces[C]. SPIE, 2000, 4093:445-450.
  • 6D. D. Walker, A. Beaucamp, D. Brooks et al... Novel CNC polishing process for pontrol of form and texture on aspheric surfaces[C]. SPIE, 2002, 4767:99-106.
  • 7D. D. Walker, A. Beaucamp, D. Brooks et al.. New results from the precessions polishing process scaled to larger sizes[C]. SPIE, 2004, 5494:71-81.
  • 8D. D. Walker, A. Beaucamp, V. Doubrovski et al.. Automated optical fabrication first results from the new "Precessions" 1.2 m CNC polishing machine[C]. SPIE, 2006, 6273:91-98.
  • 9D. D. Walker, A. Baldwin, R. Evans et al.. A quantitative comparison of three grolishing techniques for the precessions TM process[C]. SPIE, 2007, 6671:H1-H9.
  • 10Quantang Fan,Jiangqiang Zhu, Bao' an Zhang. Effect of the geometry of workpiece on polishing velocity in free annular polishing [J]. Chin. Opt. Lett. , 2007,5(5): 298-300.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部