期刊文献+

激光快速成形过程中熔池形态的演化 被引量:27

Evolution of Molten Pool Shape in the Process of Laser Rapid Forming
原文传递
导出
摘要 采用高速摄影技术对激光快速成形过程中液态熔池的形成及其演化过程进行了实时观察。结果发现,以一定速度向前运动的激光束辐照基材时,基材表面开始熔化并形成液态熔池,经过一个较短的时间间隔(约1.0 s)后熔池深度增大至一定值,熔池长度则围绕一恒定值波动。以恒定送粉率向熔池中连续送进金属粉末时,熔池的长度和宽度逐渐减小,熔池寿命缩短。同时熔池后沿不断抬高即熔覆层厚度不断增加,最大熔深处熔池自由表面法向和激光束轴线之间的夹角由几度逐渐增大到20°~30°左右。熔池自由表面发生周期性的变化,实验观察到熔池后沿有周期性的“岛状凸起”出现和消失现象。数值计算结果证实这主要是熔池中熔体在表面张力梯度下引起的强制对流作用的结果。 The high-speed photography has been employed to realize in situ observation on the formation and evolution of the molten pool in the process of laser rapid forming. The results show that the substrate begins to melt and produce a liquid molten pool with the laser beam scanning on it. After a rather short time (about 1.0 s) the molten pool depth increases to a certain value while the molten pool length fluctuates surrounding an invariableness figure. The depth and width of the molten pool decrease gradually with a constant flow rate powder being fed into the molten pool. And the lifespan of the molten pool turns to be short. Simultaneously the tail of the molten pool runs up that means the thickness of the cladding layer increases continuously with the powder ejecting into the molten pool. The angle between the normal of the free surface of the molten pool and the laser beam axis increases from a few degrees to 20-30 degree. There is an "island heave" emerging and vanishing seasonally at the tail of the molten pool free surface by in situ observation. This is the result of forced convection on the fused liquid of the molten pool induced by surface tension gradient, which has been proved by numerical simulation.
出处 《中国激光》 EI CAS CSCD 北大核心 2007年第3期442-446,共5页 Chinese Journal of Lasers
基金 国家自然科学基金(50405038) 西北工业大学青年教师创新基金(W016212)
关键词 激光技术 熔池形态 高速摄影 自由表面 激光快速成形 熔体流动 laser technique molten pool shape high-speed photography free surface laser rapid forming fused liquid evolution
  • 相关文献

参考文献15

  • 1J. Mazumder, J. Choi, K. Nagarathnam et al.. The direct metal deposition of H13 tool steel for 3-D components [J]. JOM, 1997, 49(5):55-60
  • 2P, S. Mohanty, J. Mazumder. Solidification behavior and mierostruetural evolution during laser beam-material interaction [J]. Metall. Mater. Trans. B, 1998, 29B:1269-1279
  • 3J. O. Milewski, D. J. Thoma. Development of a near net shape processing method for rhenium using directed light fabrication [J]. Materials and Manufacturing Processes, 1998, 13(5) :719-730
  • 4C. L. Atwood, M. L. Griffith, L. D. Harwell et al.. Laser spray fabrieation for net-shape rapid produet realization LDRD [R]. Sandia Report, Sandia99-0739, 1999. 1-32
  • 5M. Gaumann, S. Henry, F. Cleton et al.. Epitaxial laser metal formingl analysis of mierostrueture formation [J]. Materials Science and Engineering A, 1999, 271 (1-2): 232-241
  • 6Jae-Do Kim, Yun Peng. Melt pool shape and dilution of laser cladding with wire feeding [J]. J. Materials Processing Technology, 2000, 104(3): 284-293
  • 7F. G. Arcella, F. H. Froes. Producing titanium aerospace components from powder using laser forming[J]. JOM, 2000, 52(5) :28-30
  • 8J. Mazumder, D. Dutta, N. Kikuchi et al.. Closed loop direct metal deposition: art to part [J]. Optics and Laser in Engineering, 2000, 34(4-6) :397-414
  • 9Dongraing Hu, Radovan Kovacevic. Sensing, modeling and control for laser-based additive manufacturing [J]. International Journal of Machine Tools & Manufacture, 2003, 43(1):51-60
  • 10A. J. Pinkerton, L. Li. An analytical model of energy distribution in laser direct metal deposition [C]. Proceedings of the Institution of Mechanical Engineers, 2004, 218:363-374

二级参考文献13

  • 1张盛海,陈铠,肖荣诗,左铁钏.填充粉末对铝合金高功率CO_2激光焊接的影响[J].中国激光,2005,32(6):860-863. 被引量:18
  • 2唐霞辉,朱海红,段军,李家.辅助气体对CO_2激光焊接等离子体的作用[J].华中理工大学学报,1995,23(1):53-57. 被引量:5
  • 3M, Picasso, C. F. Marsden, J.D, Waniere et al., A simple but realistic model for laser cladding[J].Metallurgical and Materials Transactions B,1994,25B(4):281-291.
  • 4Jehnming Lin. Temperatuer analysis of the powder streams in coaxial laser cladding[J].Optics & Laser Technology,1999,31(8):565-570.
  • 5Jehnming Lin. A simple model of powder catchment in coaxial laser cladding[J].Optics & Laser Technology, 1999,31(3):233-238.
  • 6Yunchang Fu, A. Loredo, B. Martin et al.. A theoretical model for laser and opwder particles interaction during laser cladding [J]. Materials Processing Technology,2002,128(1-3):106-112.
  • 7C.A.Binroth, T. C.Zuo, G. Sepold, CO2-laser welding with filler materials of high strength aluminium alloys [C]. Proe. of 2nd Int. Power Beam Technology Conference, Sept, 1990, 119-127
  • 8Rongshi Xiao, Kai Chen, Tiechuan Zuo et al.. Influence of the wire addition direction in CO2 laser welding of aluminum [C].SPIE, 2002, 4915:128-137
  • 9E. Schubert, M. Klassen, I. Zerner et al.. Light-weight structures produced by laser beam joining for future applications in automobile and aerospace industry [J]. Journal of Materials Processing Technology, 2001, 115:2- 8
  • 10J.Arnold, R. Volz. Laser powder technology for cladding and welding [J]. Journal of Thermal Spray Technology, 1999, 8(2) :243-248

共引文献11

同被引文献357

引证文献27

二级引证文献180

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部