摘要
本文所考虑的图皆指有限无向简单图。设G是一个图,具有顶点集合V(G)和边集合E(G)。文中未加说明的记号和定义参见文献[1]。设S(?)V(G),用G[S]表示G中由S导出的子图。用d_G(x)表示顶点x在G中的次数。设a和b是两个非负整数且a≤b。图G的一个[a,b]-因子是G的一个支撑子图H,使对任意的x∈V(H)有设。如果去掉图G的任意k个顶点所剩的图仍有[a,b]-因子,则称图G是(a,b,c)-临界图,或者说G是(a,b,k)-临界的。如果a=b=n,则简称(a,b,k)-临界图为(n,k)-临界图。如果n=1,则简称(n,k)-临界图为k-临界图。Plummer和Lovasz讨论了2-临界图的特征和性质。于青林给出了k-临界图的特征。刘桂真和于青林研究了(n,k)-临界图的特征。本文考虑a<b的情况。给出一个图是(a,b,k)-临界图的充分必要条件,同时研究子(a,b,k)-临界图的性质和顶点次数等。
出处
《科学通报》
EI
CAS
CSCD
北大核心
1997年第11期1229-1230,共2页
Chinese Science Bulletin