期刊文献+

各向异性H^P(R^n)上的乘子定理(英文) 被引量:1

SOME MULTIPLIER THEOREMS FOR NON-ISOTROPIC H^P(R^n)
全文增补中
导出
摘要 记t>0且1=α1≤α2≤…≤αn·设At=diag(t(α1)…,t(αn))是Rn\{0}上各向异性连续交换群.对L∞(Rn)中的函数m,以及适当选取的中的函数η和任意的δ>0,定义mδ(ξ)=m(Aδξ)η(ξ).证明了当0<P<1,且属于各向异性的Herz空间时,m是各向异性HP(Rn)上的乘子.进一步,当p=1时,如果将替换成一个稍小的空间K(ω),得到了类似的结论. Let At =diag(tα1, '', tαn) with t>0 and 1=α1≤α2≤...≤αn. be continuous groups ofnon - isotropic transformations of Rn\{0}. For a function m∈L∞ (Rn), an appropriately choen function (Rn) and any δ>0, define mδ(ξ)=m(Aδξ)η(ξ). The authers show that if 0<p<1, γ= andbelongs to the non-isotropic Herz space (Rn), then m is a Fouriermultiplier of the non- isotropic Hardy space HP(Rn). Moreover, for p=1, the authors obtain a similar theorem if the space (Rn) is replaced by a slightlysmaller space K(ω).
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 1997年第1期1-9,共9页 Journal of Beijing Normal University(Natural Science)
关键词 各向异性 HERZ空间 乘子定理 哈代空间 non-isotropic, Hardy spaces, Herz spaces multipliers
  • 相关文献

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部