摘要
设S={X1,X2,…,Xn}是不同正整数的集合.称S为gcd封闭集,如果Xi与xj的最大公因数(Xi,xj)也属于S(1≤i,j≤n).矩阵[S]被称为S上的最小公倍数(LCM)矩阵,如果它的i,j位置元素是Xi与xj的最小公倍数[xi,xj].BourqueandLigh猜想:一个gcd封闭集上的LCM矩阵是可逆的.作者证明了当n≤7时猜想成立,但当n≥8时猜想不成立.同时也给出一个新的计算det[S]的公式.
Let S={x1, x2, '', xn} be a set of distinct positive integers. The set S is calledged-closed if it contains the greatest common divisor (xi, xj) of xi. and xj for 1<i, j<n. The matrix [S]is called the least common multiple (LCM) matrix on S if its i, j entry is the least common multiPle [xi, xj] of xi and xi. Bourque and Ligh conjecturedthat the LCM matrixon a ged-closed Setis invertible. The aimof this paper is to show that the conjecture does not hold in general when n≥8,but the LCM matrix on a geb-closed set is invertible if n≤7. A new calculating formula of det [S]is also presented.
出处
《北京师范大学学报(自然科学版)》
CAS
CSCD
北大核心
1997年第1期49-53,共5页
Journal of Beijing Normal University(Natural Science)