期刊文献+

黄土高原西部土壤水分时空变化模拟研究——以安家坡流域为例 被引量:16

GIS-Assisted Modeling Spatial and Temporal Variations of Soil Water Content in Anjiapo Catchment of the Western Loess Plateau
下载PDF
导出
摘要 土壤水作为陆地水循环和水量平衡的一个重要组成部分,在土壤-植被-大气连续体物质与能量转化中起着重要的作用,成为陆面过程研究中的重要参量.选择黄土高原西部的安家坡流域,采用多点长序列观测方法,对该区域土壤水分的时空变化规律进行研究.结果表明:坡向和土地利用类型是小流域土壤水分变异的重要影响因素,得出了不同立地条件下土壤水分的剖面变化与时间的动态规律.在此基础上,利用土壤湿度指数结合主要影响因素预测土壤水分的时空变化,旨在为黄土高原大中尺度的土壤水分模拟提供思路. Understanding of the spatial and temporal variability of soil water content (SWC) can provide an important baseline for assessing ecological (for restoration) and economic (for agriculture) conditions at micro- and meso-scales. To characterize the soil water content, a small catchment, Anjiapo (10 km^2) in the semiarid western Loess Plateau was selected. Soil moisture has been measured at 36 sites for 16 years in the catchment. Several conclusions can be drawn from the analytical results of data: 1) wetter soil moisture conditions occur in two periods (one period from April to May, the other from the late August to October). 2) SWC varies with slope position, aspect and land use type. SWC is higher in low slope position than in higher slope position, higher in north-facing slope than in south-facing slope, and higher in cropland than in shrub land and forestland. 3) a hydrological active layer of soil moisture generally occurs at 0~40 cm depth from surface in grassland and forestland, 0~ 30 cm in wasteland,0~ 100 cm in farmland. The soil moisture in the active layer is affected by meteorological, biological, and anthropogenic factors and exhibits larger amplitude of variations than other layers. Wetness index model was used to predict the temporal and spatial variation of soil moisture patterns in this study. Comparing predicted soil moisture with the observed soil water content shows that the correlation is significant in April, August and September at the 0.01 level, while the correlation is significant in other May, June and July at the 0.05 level. According to the empirical relationship between the wetness index and observed soil water content, the wetness index can be converted into soil water content to serve for water resource assessment and ecological restoration. The objective is to build physical processes-based model that can explain the variability of soil water content and that can be applicable to larger scales and other bio-climatically similar area.
出处 《冰川冻土》 CSCD 北大核心 2007年第5期785-794,共10页 Journal of Glaciology and Geocryology
基金 国家自然科学基金项目(40671067) 教育部重点项目(10425)资助
关键词 土壤水分 时空变化 土壤湿度指数 安家坡流域 soil water content spatial and temporal variations wetness index Anjiapo catchment
  • 相关文献

参考文献38

  • 1Bosznsy M.Generalization of SCS curve number model[J].Journal of Irrigation and Drainage Engineering,1989,155:139-144.
  • 2Andrew W W,Rodger G B,Timothy G R.The Tarrawarra Project:High resolution spatial measurement,modelling and analysis of soil moisture and hydrological response[J].Hydrological Processes,1999,13:633-652.
  • 3Li Jikang,Shafiqul I.On the estimation of soil moisture profile and surface fluxes partitioning from sequential assimilation of surface layer soil moisture[J].Journal of Hydrology,1999,220:86-103.
  • 4Fast J D,McCorele M D.The effect of heterogeneous soil moisture on a summer baroclinic circulation in the Central United States[J].Mon.Wea.Rev.,1991,119(6):2140-2167.
  • 5Chang J T,Wetzel R J.Effects on spatial variations of soil moisture and vegetation on the evolution of a prestorm environment:A numerical case study[J].Mon.Wea.Rev.,1991,119:1368-1390.
  • 6Odorico P D,Ridolfi I,Porporat A,et al.Preferential states of seasonal soil moisture:the impact of climate fluctuations[J].Water Resources Research,2000,36(8):2209-2211.
  • 7Baird A J,Wilby R L.Ecohydrology:Plants and Water in Terrestrial and Aquatic Environments[M].London:Routledge,1998.
  • 8Rodr guez-Iturbe I,Porporato A.Ecohydrology of WaterControlled Ecosystems:Soil Moisture and Plant Dynamics[M].Cambridge:Cambridge University Press,2004.
  • 9Sharma M L,Luxmore R L,DeAngelis R,et al.Subsurface Water flow simulated for hillslopes with spatially dependent soil hydraulic characteristics[J].Water Resources Research,1987,23:1523-1530.
  • 10Yates S R,Warrick A W.Estimating soil water content using cokriging[J].Soil Science Society of America,Journal,1987,51:23-30.

二级参考文献26

  • 1姚德良,邱克俭,冀伟,孙菽芬.在植物耗水条件下土壤水分动态的数值模拟[J].土壤学报,1993,30(1):111-115. 被引量:13
  • 2冯国章,王双银,王学斌.自激励门限自回归模型在枯水径流预报中的应用[J].西北农业大学学报,1995,23(4):78-83. 被引量:9
  • 3[1]Beven K J,Kirkby M J,Schofield N.Testing a physically-based flood forecasting model (TOPMODEL) for three U.K.Catchments[J].Journal of Hydrology,1984,69:119-143.
  • 4[2]Beven K J,Kirkby M J.A physically based,variable contributing area model of basin hydrology[J].Hydrological Sciences Bulletin,1979,24:43-68.
  • 5[3]Sivapalan M,Beven K J,Wood E F.On hydrologic Similarity 2--A scaled model of storm runoff production[J].Water Resources Research,1987,23(12):2266-2778.
  • 6[4]Quinn P F,Beven K J,Lamp R.The ln(a/tanβ) index:how to calculate it and how to use it within the TOPMODEL framework[J].Hydrol.Process,1995,9(2):161-182.
  • 7[5]Wolock D M,McCsbe Q J.Comparison of single and multiple flow direction algorithms for Computing topographic parameters in TOPMODEL[J].Water Resource Research,1995,31(5):1315-1324.
  • 8[6]Saulnier A M,Bevem K J,Obled C.Digital elevation analysis for distributed hydrological modeling:reducing scale dependence in effective hydraulic conductivity Values[J].Water Resources Research,1997,33:2097-2101.
  • 9[7]Wolock D M,Price C V.Effects of digital elevation model and map scale and data resolution on a topography-based watershed model[J].Water Res.Research,1994,30(11):3041-3052.
  • 10冯利平,博士学位论文,1995年,78页

共引文献451

同被引文献195

引证文献16

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部