期刊文献+

非线性二阶常微分方程的正周期解(英文) 被引量:7

Positive Periodic Solution of Nonlinear Second Order Ordinary Differential Equations
下载PDF
导出
摘要 探讨f既非超线性的也非次线性的非线性二阶常微分方程,其正ω-周期解的存在性.其结果拓展了Krasnosel skii锥映射不动点定理. We establish the existence of the positive co-periodic solution of nonlinear second order ordinary differential equations, as f is neither superlinear nor sublinear. The results obtained are different form the Krasnosel'skii fixed point theorem in cones.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第10期35-38,共4页 Journal of Southwest University(Natural Science Edition)
基金 重庆市教委科学技术研究资助项目(KJ051203) 重庆市科委软科学研究资助项目(CSTC3006E0026)
关键词 周期边界值 正周期解 锥映射 不动点定理 periodic boundary value positive periodic solution cone mapping fixed point theorem
  • 相关文献

参考文献6

二级参考文献45

  • 1Jiang Xiufen Yao Qingliuof Math., Northwest Normal Univ., Lanzhou 730070..AN EXISTENCE THEOREM OF POSITIVE SOLUTIONS FOR ELASTIC BEAM EQUATION WITH BOTH FIXED END-POINTS[J].Applied Mathematics(A Journal of Chinese Universities),2001,16(3):237-240. 被引量:12
  • 2Yao Qingliu, Ma Ruyun. Multiplicity of positive solutions for second-order three-point boundary value problems. Compute. Math. Appl. 2000, 40:193-204.
  • 3Ma Runyun. Positive solutions for second-order three-point boundary value problems. J. Comput. Appl. Math. 1984, 10:203-217.
  • 4Ma Runyun. Positive solutions of a nonlinear three-point boundary value problem. Electron, J. Differential Equations, 1999, 34:1-8.
  • 5Ma Runyun. Existence theorems for a second-order three-point boundary value problem. J. Math. Anal. Appl. 1997, 212:430-442.
  • 6Gupta C P. A sharper condition for the a three-poition second order boundary value problem. J. Math. Anal. Appl. 1997, 205:586-597.
  • 7Guo Dajun, Lakshmikantham V. Nonlinear Problems in Abstract Cone. Sandiege: Academic Press, 1988.
  • 8Zhong Chengkui, Fan Xianling, Chen Wenyuan. Introduction to Nolinear Functional Analysis. Lanzhou: Lanzhou University Press, 1998.
  • 9LIAN W C, WONG F H, YEH C C. On the existence of positive solutions of nonlinear second order differential equations[J]. Pinc Amer Math Soc, 1996, 124(6): 1117-1126.
  • 10Guo Dajun. Nonlinear Functional Analysis (in Chinese)[M]. Jinan:Science and Technology Press of Shangdong Province, 1985,286 - 329.

共引文献56

同被引文献44

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部