摘要
设f与g是两个不相等的非常数亚纯函数,αk(k=1,2,3,4)为其判别的公共值。a1为CM公共值,a2,a3,a4为IM公共值。本文证明了:如果∑aδ(a,f)+∑bδ(b,g)>143,则a2,a3,a4也为CM公共值。
This paper proves the following: if f and g are two non-constant meromorphic functing and ak (k =1,2,3,4) is its distinct IM common value ,when a1 is CM common value and ∑aδ(a,f)+∑bδ(b,g)〉14/3, then ak (k = 2,3,4) is also CM common value .
出处
《泰山学院学报》
2007年第3期1-4,共4页
Journal of Taishan University
关键词
亚纯函数
公共值
唯一性定理
meromorphic function
common value
uniqueness theorem