期刊文献+

逻辑方程和逻辑方程组的解法

The methods of finding the solutions to logical equation and logical equations
下载PDF
导出
摘要 首先给出了一类线性逻辑方程组的解法,然后通过主和取范式把F(x1,x2,…,xn)=1、F(x1,x2,…,xn)=0,F(x1,x2,…,xn)=G(x1,x2,…,xn)等类型的逻辑方程转化为线性逻辑方程组求解,最后给出了任意逻辑方程组的求解方法. First, the method to finding the solutions to one kind of linear logical equations was given. And then the logical equation such as F(x1,x2,…,xn) = 1,F(x1,x2,…,xn) = 0,F(x1,x2,…,xn) = G(x1,x2,…,xn)was changed into linear logical equations by principal conjunctive normal form. Finally, the method of finding the solutions to logical equations in any form was obtained.
出处 《泰山学院学报》 2007年第3期46-49,共4页 Journal of Taishan University
关键词 逻辑方程 线性逻辑方程组 解集 主合取范式 极大项 logical equation linear logical equations solution sets principle conjunctive normal form maximum item
  • 相关文献

参考文献6

二级参考文献11

  • 1Pawlak Z. Rouph Sets[J]. International Journal of Computer and Information Sciences, 1982,11:341-356
  • 2Ziarko W. Introduction to the Special Issue on Rough Sets and Knowledge Discovery. International Journal of Computational Intelligence, 1995,11(2): 223-226
  • 3ELPIDA Memory, Inc. How to Use DDR SDRAM. 2002.
  • 4Northwest Logic Design, Inc. DDR SDRAM Controller White Paper. 2000.
  • 5Hadimioglu H, Kaeli D, Lombardi F. Introduction to the Special Issue on High Performance Memory Systems. IEEE Transactions on Computers , 2001, 50(11).
  • 6Cuppu V, Jacob B. A Performance Comparison of Contemporary DRAM Architectures. In: Proc. of 26th Intl. Symp. Computer Archi- tecture, 1999-06.
  • 7Oppenheim A V. Signal and System. Prentice-Hall, 1997.
  • 8张琦,韩祯祥,文福拴.一种基于粗糙集理论的电力系统故障诊断和警报处理新方法[J].中国电力,1998,31(4):32-35. 被引量:45
  • 9苗夺谦,王珏.粗糙集理论中概念与运算的信息表示[J].软件学报,1999,10(2):113-116. 被引量:250
  • 10苗夺谦,胡桂荣.知识约简的一种启发式算法[J].计算机研究与发展,1999,36(6):681-684. 被引量:507

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部