期刊文献+

嵌入式生物芯片扫描仪图像自动定位方法研究 被引量:1

Research on Target Locating Method in Embedded Biochip Scanner
下载PDF
导出
摘要 生物芯片扫描仪扫描结果图像包含了多个高密度的微斑点阵列,为了满足嵌入式生物芯片扫描仪智能化、自动化要求,提出了一种生物芯片图像全自动定位的算法。首先对图像做基于形态学的腐蚀算法预处理,以及图像轮廓提取;采用投影法做行、列方向投影,将2维灰度矩阵转换为一维灰度和序列,结合离散傅立叶变换和功率谱运算,估计斑点的行、列间距;利用行、列间距,在1维灰度和序列中实现分段搜索,获取光斑中心粗定位;利用轮廓图像投影后出现双次峰的现象,估算斑点直径;最后,依据重心法调整斑点中心,同时采用自适应变步长搜索斑点半径,最终实现生物芯片扫描图像的精确定位和分割。本算法用C语言实现,测试平台Pentium 4 2.2 GHz,处理一幅16×19斑点阵列的图像,算法用时1.8 s,定位准确率达到100%。 The image scanned by embedded biochip scanner was filled with many high density of micro-spot arrays. In order to meet the needs of intelligentizing and automatization, a method was proposed to locate the target spots on the biochip image. Firstly, an erosion method based on morphology was applied to this image, and the outline of the spots was got. With horizontal projection was vertical projection, the two-dimension gray matrix was transformed to two one-dimension lists. Combined with Fourier transform method and power spectrum transform method, column distance and row distance were calculated for us to search the center in the lists. In view of the fact that the outline image will show two sub-peaks if it is projected, spot diameter was estimated easily. Finally, depending on gravity method and adaptive step length variation searching method, the target locating and segmentation were realized accurately. The method was carried out by C programming language and tested on Pentium IV 2.2 GHz. The locating process spent 1.8 seconds to dispose a image with 304 spots( row:lr, column: 19). Locating accuracy came to a hundred-percent.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2007年第2期150-155,共6页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金资助项目(60671046) 中科院西部之光和成都光电技术研究所所长基金资助项目(C06K010) 成都市科技攻关项目(06GGYB483SF-030)
关键词 生物芯片 图像定位 图像分割 biochip target locating target segmentation
  • 相关文献

参考文献10

  • 1朱疆,黄国亮,高峻雄,张旭,于军.DNA微阵列图象信息的自动提取[J].计算机工程与应用,2004,40(7):84-87. 被引量:7
  • 2Hirata Jr R,Barrera J,Hashimoto R F,et al.Microarraygridding by mathematical morphology[C]//Dibio L B,Wu Shing-ting.Proceedings ⅩⅣ Brazilian Symposium on Computer Graphics and Image Processing.USA:IEEE,2001:112-119.
  • 3Bowman C,Baumgartner R.Automated analysis of gene-microarray images[C] //IEEE Canadian Conference on electrical and Computer Engineering.2002.
  • 4Uehara C,Kakadiaris I.Towards automatic analysis of DNA microarrays[C]//Bilof R.Proceedings of the Sixth IEEE Workshop on Applications of Computer Vision (WACV'02).USA:IEEE,2002:57-62.
  • 5Wang X H,Istepanian R S H,Song Y H.Microarray image de-noising using stationary wavelet transform[C]//Bali R.4th International IEEE EMBS Special Topic Conference on Information Technology Applications in Biomedicine.USA:IEEE,2003:15-18.
  • 6Nagarajan R.Intensity-based segmentation of microarray images[J].IEEE Transactions on Medical Imaging,2003,22(7):882-889.
  • 7Nagarajan R,Peterson C A.Identifying spots in microarrayimages[J].IEEE Transaction on Nanobioscience,2002,1(2):78-84.
  • 8Schena M.Microarray biochip technology[M].Eaton publishing,2000.
  • 9Ermolaeva O,Rastogi M,Pruitt K D,et al.Data management and analysis for gene expression arrays[J].Nature Genetics,1998,20 (1):19-23.
  • 10David D l,Bowtell.Options available-from start to finish-for obtaining expression data by microarray[J].Natural Genetics Supplement,1999,21:25-32.

二级参考文献2

共引文献6

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部