期刊文献+

调强放射治疗中散射截止半径选取对剂量计算结果的影响 被引量:2

Effect of Radiation Cut-off Radius on Dose Calculation in IMRT
下载PDF
导出
摘要 在调强放射治疗中,为了保证剂量计算的精确度和避免不必要的时间耗费,采用微分卷积积分方法进行剂量计算时,选择一个合适的散射截止半径是非常重要的。在不考虑散射的情况下,利用模拟动力学最优化方法优化得到射野强度,并用微分卷积积分法分别对一个模拟例子和一个临床例子在不同散射截止半径下的剂量分布进行了计算,然后通过对剂量体积直方图的比较发现,散射截止半径的选取不同,对剂量计算结果有着较大的影响,并且在光子的能量为6 MV时,散射截止半径选取为3 cm是比较合理的。 In intensity-modulated radiotherapy, how to choose the radiation cut-off radius is very important to the precision and computational efficiency in convolution based dose calculation. By using the simulated dynamics algorithm, the intensity profile was optimized,and the Convolution Superposition model was used to calculate the dose distribution of one test sample and one clinic case by changing the radiation cut-off radii. By comparing the dose distribution using dose volume histogram ( DVH), it was found that the dose distribution depends on the scattering cut-off distance. When the photon energy is 6 MV, the radiation cut-off radius of 3.0 cm is a reasonable choice considering both the precision and computational efficiency.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2007年第2期156-159,共4页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金资助项目(10275045) 四川大学青年科学基金资助项目(200572)
关键词 调强放射治疗 微分卷积积分法 散射截止半径 剂量计算 intensity-modulated radiotherapy(IMRT) convolution superposition radiation cut-off radius dose calculation
  • 相关文献

参考文献11

  • 1Webb S.Intensity modulated radiation therapy[M].Bristol:Institute of Physcs Publishing,2001:1-19.
  • 2Intensity modulated radiation therapy collaborative working group.Intensity-modulated radiotherapy:Current status and issues of interest[J].Int J Radiat Oncol Biol Phys,2001,51:880-914.
  • 3Kawrakow I.VMC++,electron and photon Monte Carlo calculations optimized for Radiation Treatment Planning[C]//Advanced Monte Carlo for Radiation Physics,Particle Transport Simulation and Applications.Proceedings of the Monte Carlo 2000 Meeting Lisbon.Berlin:Springer,2001:229-236.
  • 4Mackie T R,Bielajew A F,Rogers D W O,et al.Generation of photon energy deposition kernels using the EGS Monte Carlo code[J].Med Phys,1998,33:1-20.
  • 5Mackie T R,Scrimger J W,Battista J J.A convolution method of calculatingdose for 15-MV x rays[J].Med Phys,1985,12:188-196.
  • 6Boyer A,Mok E.Photon dose distribution model employing convolution calculations[J].Med Phys,1985,12:169-177.
  • 7Mohan R,Chui C.Differential pencil beam dose computation model for photons[J].Med Phys,1986,13:64-73.
  • 8Thieke C,Nill S,Oelfke U,et al.Acceleration of intensity-modulated radiotherapy dose calculation by importance sampling of the calculation matrices[J].Med Phys,2002,29(5):676-681.
  • 9Hristov D H,Moftah B A,Charrois C,et al.On the selection of optimization parameters for an inverse treatment planning replacement of a forward planning technique for prostate cancer[J].Journal of Applied Clinical Medical Physics,2002,3(3):200-211.
  • 10Hou Q,Wang Y G.Molecular dynamics used in radiation therapy[J].Phys Rev Lett,2001,87(16):168101-1-4.

同被引文献16

  • 1Shepard D M, Earl M A, LI X A, et al. Med Phys, 2002, 29:1007-1018.
  • 2Kifewski P K, Bjarnagard B E, Petti P L. Med Phys, 1986, 13(1): 74-77.
  • 3Mackie T R, Scrimger J W, Battista J J. Med Phys, 1985, 12:188-196.
  • 4Mackie T R, Bielajew A F, Rogers D W O, et al. Med Phys, 1988, 33:1-20.
  • 5Boyer A, Mok E. Med Phys, 1985, 12:169-177.
  • 6Mohan R, Chui C. Med Phys, 1986, 13:64-73.
  • 7Hristov D H, Moftah B A, Charrois C, et al. J App Clin Med Phy, 2002, 3(3): 200-211.
  • 8Siebers J V, Tong S, Lauterbach M, et al. Med Phys, 2001, 28:903-910.
  • 9Thieke C, Nill S, Oelfke U, et al. Med Phys, 2002, 29(5): 676-681.
  • 10HOU Q, WANG Y G. Phys Rev Lett, 2001, 87: 168101-1-4.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部