期刊文献+

氧分压对直流磁控溅射制备ZnO:Ga透明导电薄膜特性的影响 被引量:23

Effects of Oxygen Partial Pressure on the Properties of Transparent Conductive ZnO:Ga Films Prepared by DC Reactive Magnetron Sputtering
下载PDF
导出
摘要 通过直流反应磁控溅射法在玻璃衬底上制备了掺镓ZnO(znO:Ga)透明导电薄膜,研究了氧分压对ZnO:Ga透明导电薄膜结构和电光学性能的影响.X射线衍射结果表明所制备的薄膜具有c轴择优取向的六角多晶结构.ZnO:Ca透明导电薄膜的晶粒尺寸强烈依赖于氧分压的大小,随着氧分压的增大薄膜的晶粒尺寸先增大后减小,在氧分压为0.30 Pa时沉积的ZnO:Ga薄膜半高宽最小,晶粒尺寸最大.薄膜的电阻率随着氧分压的增大先减小后增大,沉积薄膜的最低电阻率可达3.50×10^(-4)Ω·cm.此外,所有ZnO:Ga薄膜在可见光范围内的平均透射率均超过90%. Ga-doped zinc oxide (ZnO:Ga) transparent conductive films were deposited on glass substrates by DC reactive magnetron sputtering. The influence of oxygen partial pressure on the structural, electrical and optical properties of ZnO:Ga films was investigated. The X-ray diffraction (XRD) studies show that the films are highly oriented with their crystallographic c-axis perpendicular to the substrate. The grain size of ZnO:Ga films is strongly dependent on the oxygen partial pressure. With the oxygen partial pressure increasing, the grain size of the films increases first, reaches a maximum at 0.30Pa and then decreases. As the oxygen partial pressure increases, the resistivity of ZnO:Ga films decreases gradually, reaches a minimum at 0.30Pa and then increases. The lowest resistivity of ZnO:Ga films obtained at the oxygen partial pressure of 0.30Pa is 3.50× 10^-4Ω·cm. The average transmittance of the ZnO:Ga thin films is over 90%.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2007年第6期1113-1116,共4页 Journal of Inorganic Materials
基金 国家科技部973项目(2006CB604906) 国家自然科学基金重点项目(60276044 60340460439) 浙江省自然科学基金(Y405126)
关键词 ZNO:GA 透明导电氧化物薄膜 磁控溅射 氧分压 光电特性 ZnO:Ga transparent conductive oxide film magnetron sputtering oxygen partial pressure electrical and optical properties
  • 相关文献

参考文献23

  • 1Yamamoto Y,Saito K,Takahash Ki,et al.Solar Energy Mater.Sol.Cells,2001,65:125-132.
  • 2Wang W W,Diao X G,Wang Z,et al.Thin Solid Films,2005,491:54-60.
  • 3Hirata G A,McKittrick J,Cheeks T.Thin Solid Films,1996,288:29-31.
  • 4Ma Q B,Ye Z Z,He H P,et al.Mater.Lett.,2007,61:2460-2463.
  • 5Lee C,Lim K,Song J.Sol.Energy Mater Sol.Cells,1996,43:37-45.
  • 6Ye Z Z,Tang J F.Appl.Opt.,1989,28:2817-2820.
  • 7Maldonado A,Guerra S T,Lira M M,et al.Sol.Energy Mater.Sol.Cells,2006,90:742-752.
  • 8Assunc(a)o V,Fortunato E,Marques A,et al.Thin solid films,2003,427:401-405.
  • 9Yu X,Ma J,Ji F,et al.J.Cryst.Growth,2005,274:474-479.
  • 10Ma Q B,Ye Z Z,He H P,et al.J.Cryst.Growth,2007,304:64-68.

二级参考文献21

  • 1李卫华,许琦,尤明山,徐杰,常成,刘伟,刘丽,李保云,刘广田.小麦RIL群体中GMP含量的动态累积和净遗传增量的变化规律[J].作物学报,2006,32(5):779-784. 被引量:14
  • 2Ohtomo A,Kawasaki M,Koida T,et al.Applied Physics Letters,1998,72 (19):2466-2468.
  • 3Yang W,Hullavarad S S,Nagaraj B,et al.Applied Physics Letters,2003,82 (20):3424-3426.
  • 4Vashaei Z,Harada C,Setiawan A,et al.Current Applied Physics,2004,4 (6):618-620.
  • 5Minemoto T,Negami T,Nishiwaki S,et al.Thin Solid Films,2000,372 (2):173-176.
  • 6Fang Guo-jia,Li De-jie,Yao Bao-Lun.Journal of Crystal Growth,2003,247 (3-4):393-400.
  • 7Qiu D J,Wu H Z,et al.Chinese Physics Letters,2003,20 (6):582-584.
  • 8Ogata K,Koike K,Tanitc T,et al.Journal of Crystal Growth,2003,251 (1-4):623-627.
  • 9Muthukumar S,Zhong J,Chen Y,et al.Applied Physics Letters,2003,82 (5):742-744.
  • 10Zhao D X,Liu Y C,et al.Journal of Applied Physics,2001,90 (11):5561-5563.

共引文献2

同被引文献148

引证文献23

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部