期刊文献+

股票价格遵循分数Ornstein-Uhlenback过程的期权定价模型 被引量:20

Model of Option Pricing Driven by Fractional Ornstein-Uhlenback Process
下载PDF
导出
摘要 本文从股价收益的时变性和波动的长记忆性两个方面考虑,建立了分数O-U过程;接着在分数风险中性测度下,利用分数情形下的Girsanov定理获得了分数O-U过程的唯一等价测度;进而采用拟鞅(quasi-martingale)定价方法,得到了分数市场环境中的期权定价模型,使得布朗运动和O-U过程驱动的期权定价模型均成为其特例;最后用算例,验证了长记忆参数H是期权定价中不可忽略的因素。 Considering the time variability of stock return and long memory of volatility, a fractional O-U process is given. Under the fractional risk neutral measure, we get the unique equivalent measure by using fractional Girsanov theorem. With quasi-martingale method, this paper solves an option pricing model in the fractional market, which makes original Black-Scholes equation as an special example. At last, a numerical case is employed to show that the long memory parameter H is an important factor in option pricing.
作者 赵巍 何建敏
出处 《中国管理科学》 CSSCI 2007年第3期1-5,共5页 Chinese Journal of Management Science
基金 国家自然科学基金资助项目(7037103570671025)
关键词 分数布朗运动 分数O-U过程 拟鞅 fractional Brownian motion fractional O-U process quasi-martingale
  • 相关文献

参考文献16

  • 1Osborne M.F.M..Brownian Motion in the stock market[J].Operations Research,1959,7(2):145-173.
  • 2闫海峰,刘三阳.股票价格遵循Ornstein-Uhlenback过程的期权定价[J].系统工程学报,2003,18(6):547-551. 被引量:37
  • 3闫海峰,刘三阳,李文强.股票价格遵循指数O-U过程的最大值期权定价[J].工程数学学报,2004,21(3):397-402. 被引量:24
  • 4Ding Z.,Granger C.W.J.,Engle R.F..A long memory property of stock market returns and a new model[J].Journal of Empirical Finance,1993,1(1):83-106.
  • 5Roger L.C.G..Arbitrage with fractional Brownian motion[J].Mathematical Finance,1997,7 (1):95 -105
  • 6Hu Y.,(o)ksendal B..Fractional white noise calculus and application to finance[J].Infinite Dimensional Analysis,Quantum Probability and Related Topics,2003,1(6):1-32.
  • 7Salopek D.M..Tolerance to arbitrage[J].Stochastic Process and Applications,1998,76(2):217-230
  • 8Decreusefond L.,üstünel A.S..Stochastic analysis of the fractional Brownian motion[J].Potential Analysis,1999,10(2):177-214.
  • 9Cheridito P..Arbitrage in fractional Brownian motion models[J].Finance and Stochastics,2003,7(4):533-553.
  • 10Elliott R.J.,van der Hoek.A general white noise theory and applications to finance[J].Mathematical Finance,2003,13(2):301-330.

二级参考文献28

共引文献117

同被引文献197

引证文献20

二级引证文献140

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部