期刊文献+

利用GARCH-M类模型和极值理论对上证综指的研究 被引量:3

To Analyse for the Research on Shangzheng Index Based on GARCH-M Models and Extreme Value Theory
下载PDF
导出
摘要 金融时间序列具有分布的厚尾性、波动的集聚性等特征,传统的方法难以准确的度量其风险。文中运用一种新的估计VaR和ES的方法,即采取两阶段法。首先用GARCH-M类模型(GARCH-M、EGARCH-M和TGARCH-M)拟和原始收益率数据,得到残差序列;第二步用极值分析的方法分析的尾部,最后得到收益率序列的动态VaR和ES。最后对三个模型的计算结果进行比较。 Financial time series have the characteristic of fat tail and violation assembly,so it is difficult to measure the VaR (value at risk)accurately by conventional methods.We propose a new method for estimating VaR and ES (Expected shortfall)callod two-stage approach.Firstly,GARCH-M.EGARCH-M and TGARCH-M models are used to simulated the original return rate series; then extreme value theory is used to model the tail of residuals;finally we can obtain the dynamic VaR and ES of the return rate series.At last the results of the three models are compared.
出处 《价值工程》 2007年第4期161-165,共5页 Value Engineering
关键词 风险价值 GARCH-M类模型 极值理论 厚尾 value at risk GARCH-M models extreme value theory fat tails
  • 相关文献

参考文献6

  • 1Engle R F,Lilien D M.,Robins R P.Estimating time varyingrisk premia in the term structure:The ARCH-M model[J].Econometrica,1987,55:391-407.
  • 2朱国庆,张维,张小薇,敖路.极值理论应用研究进展评析[J].系统工程学报,2001,16(1):72-77. 被引量:24
  • 3Balkema A A,de Haan L.Residual life time at great age[J].Ann Probab,1974,2:792-804.
  • 4Pickands J.Statistical inference using extreme value order statistics[J] ;Ann Statist,1975,3:119-131.
  • 5陈学华,杨辉耀.股市回报率分布的厚尾性与风险估测模型的绩效探讨[J].管理科学,2004,17(1):40-47. 被引量:4
  • 6Alexander J McNeil,Rüdiger Frey.Estimation of tail-related risk measures for heteroscedastic financial time series:an extreme value approach[J]. Journal of Empirical Finance,2000,7 (3-4):271-300.

二级参考文献23

共引文献26

同被引文献21

  • 1周好文,杨旭,聂磊.银行操作风险度量的实证分析[J].统计研究,2006,23(6):47-51. 被引量:11
  • 2陈守东,孔繁利,胡铮洋.基于极值分布理论的VaR与ES度量[J].数量经济技术经济研究,2007,24(3):118-124. 被引量:47
  • 3Altman E I, A Saunders. Credit Risk Measurement: Developments over the Last Twenty Years [J].Journal of Banking and Finance, 1997,116(24):59-117.
  • 4Willia F Treacy, Mark Carey. Credit Risk Rating Sys-tems at Large U S Banks[J].Journal of Banking and Finance,2000,(24):168-201.
  • 5Bollerslev Tim.Generaliaed Autoregressive Conditional Heteroskedasticity[J].Journal of Econometrics,1986,31.
  • 6Balke A A,de Haan L. Residual Life Time at Great Age[J].Ann Probab, 1974,(2).
  • 7Piekands J.Statistical Inference Using Extreme Value Order Statistics[J].Ann Statist,1975,(3).
  • 8Nelson D.B. Conditional Heteroskedasticity in Asset Retums:A New Approach[J].Journal of the Economic Society,1991,59.
  • 9Danielsson,J.,de Vries,C.G.Tail Index Estimation with very High Frequency Data[J].Journal of Empirical Finance,1997,(4).
  • 10Kupiec,Paul. H Techniques for Verifying the Acuracy of Measurement Models [J].Journal of Derivatives,1995,(3).

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部