期刊文献+

PSO方法的收敛性及基于微分演化的参数确定策略 被引量:1

Convergence property and parameters-selection strategy base on differential evolution of PSO
下载PDF
导出
摘要 对已有关于PSO收敛性的研究结果进行了必要的修正和完善,并提出了一种不依赖个人经验的参数选择策略。针对特定问题,将PSO方法的性能表示成参数的函数,从而将参数选择问题转变成函数优化问题。同时,采用微分演化方法来确定PSO的最佳参数,收到了较好的效果。 It was modified and completed that the previous research result on PSO convergence property and proposed a new strategy on parameter selection which did not depend on expert experience. It transformed the parameter-selection problem into functional optimization problem by creating a function of the PSO property parameters. The result is also very promising in finding the optimal parameters of PSO by differential evolution.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2007年第4期842-845,共4页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金重大资助项目(60496321) 国家自然科学基金资助项目(60373098 60173006) 山东省教育厅科技发展计划项目(J06G04)
关键词 人工智能 粒子群优化 收敛性 参数选择 微分演化 artificial intelligenee particle swarm optimization convergence property parametersselection differential evolution
  • 相关文献

参考文献9

  • 1Eberhart R,Kennedy J.A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science,Nagoya Japan,1995:39-43.
  • 2Kennedy J,Eberhart R.Particle swarm optimization[C]//Proc IEEE International Conference on Neural Networks,NJ,1995:1942-1948.
  • 3Clerc M.TRIBES-aparameter free particle swarm optimizer[DB/OL].[2002-08-10]http://clerc.maurice.free.fr/PSO.
  • 4Clerc M.Discrete particle swarm optimization:a fuzzy combinatorial black box[DB/OL].[2000-04-01][2003-10-08]http://clerc.maurice.free.fr/PSO/Fuzzy_Discrete_PSO/Fuzzy_DPSO.htm.
  • 5Krink T,Vesterstrom J S,Riget J.Particle swarm optimization with spatial particle extension[C]//Proceeding of the IEEE Congress on Evolutionary Computation,IEEE Inc.Honolulu,Hawaii USA,2002:1474-1497.
  • 6Carlisle A,Dozier G.Tracking changing extrema with adaptive particle swarm optimizer[D].Auburn University,Technical Report CSSE01-08,2001b.
  • 7Frans Van den Bergh.An analysis of particle swarm optimizers[D].Pretoria:University of Pretoria,2001.
  • 8Storn R,Price K.Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous space[D].International Computer Science Institute,Berkley,1995.
  • 9Vesterstrom Jakob,Thomsen Ren.A comparative study of differential evolution,particle swarm optimization,and evolutionary algorithms on numerical benchmark problems[C]//Proceedings of Congress on Evolutionary Computation(CEC2004),Poland,2004:1980-1987.

同被引文献8

  • 1Eberhart R,Kennedy J.A new optimizer using par-ticle swarm theory[C] ∥Proceedings of the Sixth In-ternational Symposium on Micro Machine and Hu-man Science,Nagoya,Japan,1995.
  • 2Kennedy J,Eberhart R C.Particle swarm optimiza-tion[C] ∥Proc IEEE International Conference onNeural Networks.IEEE Service Center,Piscat-away,1995.
  • 3Shi Y,Eberhart R.Monitoring of particle swarmoptimization[J].Frontiers of Computer Science inChina,2009,3(1):31-37.
  • 4Poli R.Mean and variance of the sampling distribu-tion of particle swarm optimizers during stagnation[J].IEEE Transactions on Evolutionary Computa-tion,2009,13(4):712-721.
  • 5Suganthan P N,Hansen N,Liang J J,et al.Problemdefinitions and evaluation criteria for the CEC 2005spe-cial session on real-parameter optimization[DB/OL].[2006-12-20].http://web.mysites.ntu.edu.sg/epnsugan/PublicSite/Shared%20Documents/CEC2005/Tech-Report-May-30-05.pdf.
  • 6Hansen N.Compilation of results on the 2005CECbenchmark function set[DB/OL].[2006-12-20].http://www3.ntu.edu.sg/home/epnsugan/index_files/CEC-05/compareresults.pdf.
  • 7崔光照,李小广,张勋才,王延峰,李翠玲.基于改进的粒子群遗传算法的DNA编码序列优化[J].计算机学报,2010,33(2):311-316. 被引量:28
  • 8纪震,周家锐,廖惠连,吴青华.智能单粒子优化算法[J].计算机学报,2010,33(3):556-561. 被引量:61

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部