期刊文献+

车辆振动信号的特征提取方法比较 被引量:9

Comparison of feature extraction methods of vehicle vibration signal
下载PDF
导出
摘要 针对用于车辆振动信号分析的常用方法:小波分析方法和Hilbert-Huang变换方法,以及作者新近提出的时序多相关-经验模式分解方法,通过仿真对比分析了它们各自的特点以及它们在振动信号特征提取中的适用性。非线性信号的仿真分析表明,在没有噪声或分析对象背景噪声较小的情况下,后两种方法能提取到特征信号,小波分析不适合非线性信号的分析;在强背景噪声下,前两种方法均不能得到满意的特征信息,而时序多相关-经验模式分解方法能提取到所需的目标信息。最后将时序多相关-经验模式分解方法用于某特种车辆特征信号的提取,得到了满意的结果,验证了该方法在车辆振动信号特征提取中的有效性。 The vibration signals of a vehicle always carry the dynamic information of the vehicle. These signals are very useful for the health monitoring and fault diagnosis. However, in many cases, because these signals have very low signal-to-noise ratio (SNR), to extract feature components becomes difficult and the applicability of information drops down. The characters of feature extraction of vibration signal were compared, among the two popular methods named wavelet analysis (WA) and Hilbert-Huang translation (HHT) and the multi-correlation of time series and empirical mode decomposition (MCTS-EMD), via simulation. And the applicability of them was analyzed using the simulation signal. The HHT and MCTS-EMD can extract the feature signal in no interference of noise or the SNR is a large number, while the WA is not suit for the feature extraction of nonlinear signal. In the strong background noise, the WA and HHT can not work well, contrasting them; the MCTS-EMD can extract the wanted object information. At last, The MCTS-EMD method was used to extract the feature signal of some special vehicle, a satisfactory result can be get, this validity of MCTS-EMD was validated in the feature extraction of vehicle vibration signal.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2007年第4期910-914,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 航空科学基金资助项目(04I52066) 国家自然科学基金资助项目(50675099)
关键词 信息处理技术 振动信号 特征提取 小波分析 HILBERT-HUANG变换 时间序列多相关 经验模式分解 information processing vibration signal feature extraction wavelet analysis Hilbert-Huang
  • 相关文献

参考文献9

  • 1廖庆斌,李舜酩.一种旋转机械振动信号特征提取的新方法[J].中国机械工程,2006,17(16):1675-1679. 被引量:23
  • 2Lin J.Feature extraction of machine sound using wavelet and its application in fault diagnosis[J].NDT and E International,2001,34(1):25-30.
  • 3Peng Z K,Chu F L.Application of the wavelet transform in machine condition monitoring and fault diagnostics:a review with bibliography[J].Mechanical Systems and Signal Processing,2004,18(2):199-221.
  • 4Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of Royal Society of London Series A,1998,454:903-995.
  • 5Huang N E,Shen Z,Long S R.A new view of nonlinear water waves:the Hilbert spectrum[J].Annual Review of Fluid Mechanics,1999,31:417-457.
  • 6Peng Z K,Peter W T,Chu F L.An improved Hilbert-Huang transform and its application in vibration analysis[J].Journal of Sound and Vibration,2005,286(1/2):187-205.
  • 7Shinde A,Hou Z.A wavelet packet based sifting process and its application for structural health monitoring[C]//Proceedings of the American Control Conference,2004:4219-4224.
  • 8杨世锡,胡劲松,吴昭同,严拱标.旋转机械振动信号基于EMD的希尔伯特变换和小波变换时频分析比较[J].中国电机工程学报,2003,23(6):102-107. 被引量:184
  • 9Wang W J,McFadden P D.Application of orthogonal wavelets to early gear damage detection[J].Mechanical Systems and Signal Processing,1995,9(5):497-507.

二级参考文献14

  • 1Huang N E, Shen Zheng, Long S R, et ol. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proc. R. Soc. Lond. 1998, A:903-995.
  • 2Better Algorithms for Analyzing Nonlineat[EB/OL], Nonstationary Data.http://tco.gsfc.nasa.gov,.
  • 3CH Loh, Application of the empirical mode decomposition-Hilbert spectrum method to identify near-fault ground-motion charact-eristics and structural responses[J]. Bulletin of the Seismological Society of America, 2001, 91: 1339-1357.
  • 4Vasudevan K. Empirical mode skeletonization of deep crustal seismic data: Theory and applications[J]. Journal of Geophysical Research-Solid Earth, 2000, 105: 7845-7856.
  • 5Echeverria J C, Application of empirical mode decomposition to heart rate variability analysis[J], Medical & Biological Engneering & Computing, 2001, 39:471-479.
  • 6Raghuveer M R.Time-domain Approaches to Quadratic Phase Coupling Estimation[J].IEEE Transactions on Automatic Control,1990,35(1):48-56.
  • 7Huang N E,Shen Z,Long S R,et al.The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis[J].Proceedings of Royal Society of London Series A,1998,454(1971):903-995.
  • 8Huang N E,Shen Z,Long S R.A New View of Nonlinear Water Waves:The Hilbert Spectrum[J].Annual Beview of Fluid Mechanics,1999,31:417-457.
  • 9Peng Z K,Peter W T,Chu F L.An Improved Hilbert-Huang Transform and Its Application in Vibration Analysis[J].Journal of Sound and Vibration,2005,286(1/2):187-205.
  • 10Nikias C L,Raghuveer M R.Higher Order Spectra Analysis[M].Englewood Cliffs,N J:Prentice-Hall,1993.

共引文献204

同被引文献127

引证文献9

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部