期刊文献+

基于RBF网络上界自适应学习的预警卫星滑模控制 被引量:2

Early warning satellite sliding mode control based on RBF neural networks adaptive learning
下载PDF
导出
摘要 分析了RBF(径向基函数)神经网络的基本结构和数学特性,对于预警卫星动力学系统的不确定性上界值无法测量和未知的情况,采用RBF神经网络可以对较强干扰上界进行自适应学习,并可降低控制和动力学带来的抖振。针对带有摆镜的预警卫星姿态控制问题,提出了一种基于神经网络扰动补偿的姿态滑模控制方法。针对RBF网络正交最小二乘(OLS)学习算法,采用RBF神经网络来学习不确定因素的上界值,并设计了预警卫星的姿态控制规律,解决了预警卫星动力学扰动补偿问题。利用数值仿真估算了基于RBF网络上界自适应学习滑模控制的预警卫星姿态控制系统的性能指标。 The basic structure and mathematics characteristic of RBF (Radius basic function) neural network are studied. In the conditions of the uncertain up bound value can not be measured properly and unknown for early warning satellite dynamic system, adopting RBF neural network adaptive learning the large disturbance up bound value, and reducing the vibration of control and dynamics. For the early warning satellite with motive mirror attitude control problem, a kind of attitude sliding mode control method based neural network disturbance compensation is provided. For RBF network orthogonal least square (OLS) learning algorithm, adopt RBF neural network to learning uncertain up bound value, and design attitude control law of ear!y warning satellite, and solve the dynamics compensation problem of early warning satellite. Mathematic simulation is used to estimate early warning satellite attitude control system guideline based RBF network up bound value adaptive learning sliding mode control.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2007年第4期959-964,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 '973'国家重点基础研究发展规划项目(5131201)
关键词 航天器制导与控制 预警卫星姿态控制 滑模控制 RBF神经网络 自适应学习 spacecraft navigation and control early warning satellite attitude control sliding mode control RBF neural network adaptive learning
  • 相关文献

参考文献6

  • 1Chen S,Cowan C F N,Grant M.Orthogonal least squares learning algorithm for radial basis function networks[J].IEEE Trans Neural Networks,1991,2(2):302-309.
  • 2Chen S,Chang E S,Alkadhimi K.Regularized orthogonal least squares algorithm for constructing radial basis function networks[J].International Journal of Control,1996,64(5):829-837.
  • 3Lin S C,Chen Y Y.RBF network based sliding mode control[C]//IEEE International Conference on Systems Man and Cybernetics,1994:1957-1961.
  • 4Munoz D,Sbarbaro D.An adaptive sliding-mode controller for discrete nonlinear systems[J].IEEE Transactions on Industrial Electronics,2002,47(3):574-581.
  • 5徐立新,王常虹,庄显义.基于神经网络模型的伺服系统控制与补偿方法研究[J].宇航学报,1998,19(3):83-92. 被引量:4
  • 6连葆华.改进RBF网络学习算法在卫星姿态控制中的应用[J].上海航天,2002,19(2):27-32. 被引量:1

二级参考文献6

共引文献3

同被引文献16

  • 1THOMAS L C.A Survey of Credit and Behavioural Scoring:Forecasting Financial Risk of Lending to Consumers[J].International Journal of Forecasting,2000,16(2):149-172.
  • 2WEST D.Neural Network Credit Scoring Models[J].Computers and Operations Research,2000,27(11/12):1131-1152.
  • 3HAND D J,HENLEY W E.Statistical Classification Methods in Consumer Credit Scoring:A Review[J].Journal of the Royal Statistical Society,Series A (Statistics in Society),1997,160(3):523-541.
  • 4BAESENS B,VAN GESTEL T,VIAENE S,et al.Benchmarking State-of-the-Art Classification Algorithms for Credit Scoring[J].Journal of the Operational Research Society,2003,54(6):627-635.
  • 5ZHOU LIGANG,LAI KIN KEUNG,YU LEAN.Credit Scoring Using Support Vector Machines with Direct Search for Parameters Selection[J].Soft Computing-A Fusion of Foundations,Methodologies and Applications,2009,13(2):149-155.
  • 6ZELLNER A.Bayesian Estimation and Prediction Using Asymmetric Loss Function[J].Journal of the American Statistical Association,1986,81(1):446-451.
  • 7GYAN PRAKASH,SINGH D C.Shrinkage Estimation in Exponential Type-Ⅱ Censored Data under LINEX Loss[J].Journal of the Korean Statistical Society,2008,37(1):53-61.
  • 8XIAO Yu-shan,TAKADAY,SHI Ning-zhong.Minimax Confidence Bound of the Normal Mean under an Asymmetric Loss Function[J].Annals of the Institute of Statistical Mathematics,2005,57(1):167-182.
  • 9林雷,王洪瑞,任华彬.基于模糊变结构的机械臂控制[J].控制理论与应用,2007,24(4):643-645. 被引量:35
  • 10孙永海,孙钟雷,李宇.基于遗传组合网络的肉用人工嗅觉系统[J].吉林大学学报(工学版),2007,37(5):1209-1213. 被引量:10

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部