摘要
分析了RBF(径向基函数)神经网络的基本结构和数学特性,对于预警卫星动力学系统的不确定性上界值无法测量和未知的情况,采用RBF神经网络可以对较强干扰上界进行自适应学习,并可降低控制和动力学带来的抖振。针对带有摆镜的预警卫星姿态控制问题,提出了一种基于神经网络扰动补偿的姿态滑模控制方法。针对RBF网络正交最小二乘(OLS)学习算法,采用RBF神经网络来学习不确定因素的上界值,并设计了预警卫星的姿态控制规律,解决了预警卫星动力学扰动补偿问题。利用数值仿真估算了基于RBF网络上界自适应学习滑模控制的预警卫星姿态控制系统的性能指标。
The basic structure and mathematics characteristic of RBF (Radius basic function) neural network are studied. In the conditions of the uncertain up bound value can not be measured properly and unknown for early warning satellite dynamic system, adopting RBF neural network adaptive learning the large disturbance up bound value, and reducing the vibration of control and dynamics. For the early warning satellite with motive mirror attitude control problem, a kind of attitude sliding mode control method based neural network disturbance compensation is provided. For RBF network orthogonal least square (OLS) learning algorithm, adopt RBF neural network to learning uncertain up bound value, and design attitude control law of ear!y warning satellite, and solve the dynamics compensation problem of early warning satellite. Mathematic simulation is used to estimate early warning satellite attitude control system guideline based RBF network up bound value adaptive learning sliding mode control.
出处
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2007年第4期959-964,共6页
Journal of Jilin University:Engineering and Technology Edition
基金
'973'国家重点基础研究发展规划项目(5131201)
关键词
航天器制导与控制
预警卫星姿态控制
滑模控制
RBF神经网络
自适应学习
spacecraft navigation and control
early warning satellite attitude control
sliding mode control
RBF neural network
adaptive learning