期刊文献+

微槽冷却热沉结构尺寸的优化设计 被引量:5

Optimization design of structural size of microchannel cooling heat sink
下载PDF
导出
摘要 以热阻和压降作为2个目标函数建立了微槽冷却热沉的多目标优化模型,采用序列二次规划(SQP)方法对微槽的结构尺寸进行了优化设计。优化结果表明:微槽冷却热沉的结构形状对传热性能有很大的影响,与三角形和梯形结构相比,矩形微槽结构的传热效率更高。给出了2种加权系数情况下的优化尺寸,相应的微槽宽度分别为130μm和120μm,槽栅的宽度分别为176μm和350μm,微槽的高度分别为640μm和1000μm,相应的热阻分别为0.4857K/W和0.5094 K/W。对以上得到的优化结构的微槽冷却热沉的流体流动和传热进行了数值模拟,得到芯片的最高温度分别为358.34 K和361.52 K,完全可以满足工作芯片对温度的要求。 Aiming at the thermal resistance and pressure drop as two objective functions, the multiobjective optimization model of the microchannel cooling heat sink was built. The sequential quadratic programming (SQP) method was used to optimize the structural sizes of microchannel. The optimization results show that the thermal transfer performance of microchannel cooling heat sinks is affected intensively by their structural shape, and compared with triangle and trapezoid shape, rectangle structure has better thermal transfer performance. Two sets of optimized sizes under two sets of different weighting coefficients were given, and the corresponding width of channel were 130 and 120 μm, and fin width were 176 and 350 μm, and height were 640 and 1000 μm, and the thermal resistance were 0. 4857 and 0. 5094 K/W, respectively. The numerical simulation of the fluid flow and the thermal transfer of the above optimized structure shows that the highest temperatures of chips were 358. 34 and 361. 52 K, respectively, meeting the requirement of the chip for the work temperature.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2007年第2期313-318,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家安全重大基础研究973项目(5131201)
关键词 动力机械工程 传热性能 微槽冷却热沉 多目标优化设计 微小卫星 power machinery and engineering heat transfer performance microchannel cooling heatsink multiobjective optimization design micro-satellite
  • 相关文献

参考文献14

  • 1过增元.当前国际传热界的热点--微电子器件的冷却.中国科学基金,1988,(2):20-25.
  • 2Kleiner Michael B,Kuehn Stefan A,Haberger Karl.High performance forced air cooling scheme employing microchannel heat exchangers[J].IEEE Transactions on Components,Packaging and Manufacuring Technology Part A,1995,18(4):795-804.
  • 3Tuckerman D B,Pease R F W.High-performance heat sinking for VLSI[J].IEEE Electron Dev Lett.1981(2):126-129.
  • 4Tuckeman D B,Pease R F W.Ultrahigh thermal conductance microstructures for cooling integrated circuits[C]// Proc 32nd Electronics Components Conference.New York,1981.
  • 5Peng X F,Peterson G P.Convective heat transfer and flow friction for water flow in microchannel structures[J].International Journal of Heat Mass Transfer,1996,39(12):2599-2608.
  • 6Ryu J H,Choi D H,Kim S J.Three-dimensional numerical optimization of a manifold microchannel heat sink[J].International Journal of Heat and Mass Transfer,2003,46:1553-1562.
  • 7Ryu J H,Choi D H,Kim S J.Numerical optimization of the thermal performance of a microchannel heat sink[J].International Journal of Heat and Mass Transfer,2002,45:2823-2827.
  • 8Birur Gajanana C,Sur Tricia Waniewski,Paris Anthony D,et al.Micro/nano spacecraft thermal control using a MEMS-based pumped liquid cooling system[J].SPIE Micromachining and Microfabrication,200l,4560:21-24.
  • 9Wen Z M,Choo K F.The optimum thermal design of microchannel heat sinks[C]//IEEE/CPMT Electronic Packaging Technology Conference.Singapore,Singapore,1997.
  • 10Kim S J,Kim D.Forced convection in microstructures for electronic equipment cooling[J].Journal of Heat Transfer,1999,121:639-645.

共引文献10

同被引文献23

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部