期刊文献+

具有不确定测量输出系统的滚动时域估计 被引量:1

Moving horizon estimation for stochastic systems with missing measurements
下载PDF
导出
摘要 针对具有不确定测量信息的系统讨论了一种滚动时域估计(moving horizon estima-tion,MHE)方法。首先,在已知的错误信号输出概率的基础上,融合预测控制的滚动优化原理,在每个采样时刻通过极小化优化问题的性能指标估计出系统的初始状态和作用在系统上的扰动,接着再由系统的动态方程计算状态的估计值。仿真结果表明:与卡尔曼滤波方法相比,MHE方法能处理系统约束,具有比卡尔曼滤波更好的估计性能。 Considering estimation (MHE) a linear uncertain system with strategy was proposed. Based on missing measurements a moving horizon the probability of occurrence of missing measurements, the initial state and disturbance were estimated by minimizing performance object at sample time, and then the estimation value was calculated by dynamic equation of the system. The simulation results show that MHE can solve the constrained linear system and has more effective estimation performance compared with Kalman filter strategy.
作者 赵海艳 陈虹
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2007年第2期396-400,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金资助项目(60374027)
关键词 自动控制技术 最小方差 滚动时域估计 不确定测量值 到达代价 automatic control technology minimum variance moving horizon estimation missingmeasurements arrival cost
  • 相关文献

参考文献14

  • 1Nahi N.Optimal recursive estimationwith uncertain observation[J].IEEE Trans Inf Theory,1969,15 (4):457-462.
  • 2Ling Q,Lemmon M D.Optimal dropout compensation in networked control systems[C]// 42ndIEEE Conference on Decision and Control.Maui,HI.United States,2003.
  • 3Nilsson J.Real-time control systems with delays[D].Lund,Sweden:Department of AutomaticControl,Lund Institute of Technology.1998.
  • 4Sinopoli B,Schenato L,Franceschetti M,et al.Kalman filtering with intermittentobservations[J].IEEE Trans Autom Control,2004,49(9):1453-1464.
  • 5Savkin A V,Petersen I R.Robust filtering with missing data and a deterministicdescription of noise and uncertainty[J].International Journal of SystemsScience,1997,28(4):373-378.
  • 6Savkin A V,Petersen I R,Moheimani S O R.Model validation and state estimation foruncertain continuous-time systems with missing discrete-continu-ous data[J].Computers& Electrical Engineering.1999,25:11,29-43.
  • 7Smith S,Seller P.Estimation with lossy measurements:jump estimators for jumpsystems[J].IEEE Trans Autom Control,2003,48(12):2163-2171.
  • 8Wang Z,Ho D,Liu X.Variance-constrained filtering for uncertain stochastic systems withmissing measurements[J].IEEE Trans Autom Control,2003,48(7):1254-1258.
  • 9Wang Z,Zhu J,Unbehauen H.Robust filter design with time-varying parameter uncertaintyand error variance constraints[J].International Journal of Control,1999,72(1):30-38.
  • 10赵海艳,高兴泉,陈虹.滚动时域估计在三容系统中的应用[J].吉林大学学报(信息科学版),2004,22(4):298-302. 被引量:3

二级参考文献8

  • 1RAO C V, JAMES B RAWLINGS. Nonlinear moving horizon estimation [C] // In FRANK ALLGAWER, ALEX ZHENG. Nonlinear Model Predictive Control-volume 26 of Progress in Systems and Control Theory. Basel:Birkhauser, 2000: 45-69.
  • 2MAYNE D, RAWLINGS J, RAO C, SCOKAERT P. Constrained model predictive control: Stability andoptimality[J]. Automatica, 2000, 36: 789-814.
  • 3CHRISTOPHER V RAO, JAMES B RAWLINGS, JAY H LEE. Constrained linear state estimation-a moving horizon approach [J]. Automatica, 2000, 37 (10): 1 619-1 628.
  • 4RAO C V RAWINGS J B. Nonlinear moving horizon state estimation [C]//In Proc Int Symposium on Nonlinear Model Predictive Control Assessment and Future Directivons. Ascona, Switerland: [s. n.], 1998: 146-163.
  • 5RAO C V, RAWINGS J B. Nonlinear moving horizon state estimation [C] //In Proc Int Symposium on Nonlinear Model Predictive Control Assessment and Future Directions. Ascona, Switzerland: [s. N. ], 1998: 146-163.
  • 6刘志远 陈虹(LIUZhi-yuan ChengHong).滚动时域估计:一种约束系统估计的新方法(Moving horizon estimation:Constrained linear state estimation-a moving horizon approach)[C].第二十二届中国控制会议,..
  • 7席裕庚,耿晓军,陈虹.预测控制性能研究的新进展[J].控制理论与应用,2000,17(4):469-475. 被引量:85
  • 8陈虹,刘志远,解小华.非线性模型预测控制的现状与问题[J].控制与决策,2001,16(4):385-391. 被引量:66

共引文献7

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部